
Chaining RC Responses: Learning with PSPICE and
Matlab/Octave

October 2008, José Gaspar

Main objectives of this page:
- Building an analytical expression for the response of a first order circuit (RC series)
given a step voltage source. Using the fact that the form of the expression is well known,
one just needs to find (i) the time constant τ, (ii) the initial voltage vc(0), and (iii) the
voltage after infinite time vc(∞), for each step in the voltage source.
- Using the continuity of the capacitor's voltage to chain several analytical
expressions (responses), considering that the voltage source changes its value from time
to time.

Fig.1 The RC series circuit, having three different time constants: (left) 1KΩ Resistor

and 1 micro Farad Capacitor, (middle) 1KΩ Resistor and 1 mili Farad (1mF) Capacitor,
(right) 2KΩ Resistor and 1mF Capacitor. The voltage source value along time is

encoded in a data file under the label "my_vstim".

Given the resistance and capacity values of a RC circuit, the time constant, τ is
immediately determined. For example τ=1KΩ*1μF=1ms. The general shape of
response to a constant source voltage is given by:

τ
t

evvvtv
−

∞−+∞=))()0(()()((Eq.1)
For instance, if the capacitor starts discharged and the voltage source changes from 0V
to 5V at t=0s, then the capacitor's voltage along time is simply:

310/)50(5)(
−−−+= tetv (Eq.2)

In case the voltage source changes its value at various moments, than the response
shown in the previous equations, needs to be adapted accordingly to the changes of the
source. Each step of the source motivates one response, the various responses have to be

"chained" guaranteeing that the final value of one response is equal to the initial value
of the next response.

For instance, if the voltage source is 0V for t<0ms, 5V for t in [0ms..5ms], and gets to
6V for t in [5ms..10ms], then the capacitor charges to 5V till t=5ms and then charges a
little more, till 6V, for t=10ms. Then you would have two parts for the capacitors
voltage:

[]
[]⎪⎩

⎪
⎨
⎧

∈−+
∈−+= −−

−

−−

−

mstev
mstetv

t

t

10..5..,)6)5((6
5..0,)50(5)(33

3

10/)10.5(

10/

 (Eq.3)

In general, whenever there is a change of the source, a new RC response must be
computed, considering the state where the capacitor was left with the previous source
value.

Lets say that the voltage source changes at the times t=t00, t10, t20, ... ti0, then one has to
compute the responses v0(t), v1(t), v2(t), ... vi(t), considering the states where the
capacitor was left in the previous step, vi-1(ti0) and the values to where the capacitor will
run, vi(∞) if the current source value remains till infinity. In summary, the chaining rule
is:

i

itt

iiiii evtvvtv τ
0

))()(()()(01

−
−

− ∞−+∞= (Eq.4)

1. Simulation of the RC circuit

In this section we assume that you have installed: (i) the circuit simulator PSPICE (the
student version 9.1 is freeware), and (ii) a matrices computations tool as Matlab
(commercial product) or Octave (freeware; 52Mb for octave-3.0.1 windows binary).

The simulation of the circuit and visualization of the results is as follows:

a) Uncompress to a folder the next file (click to download):

 rc_resp.zip

b) Open the file "rc_resp.opj" with the program Capture included in PSPICE

c) Simulate the circuit in the Capture's menu "pspice -> run" or click in the icon named
"Run pspice". Before starting the simulation, make sure that the window which is
selected is the project's window (".opj") and not the circuit window.

d) Visualization of the response using Matlab or Octave:

 >> cd c:\directory\where\the\zip\was\decompressed
 >> rc_resp_show

e) Choosing other stimulus (source) signals, can be done also in Matlab / Octave:

 >> rc_choose_vs(1); % alternatively to 1, there are also 2, 3 and other choices
you can see by editing rc_choose_vs.m

f) After choosing other stimulus, run again (c) and (d).

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

time [seconds]

V
ol

ta
ge

 [V
ol

ts
]

Vs(t)
Vc(t)

Fig.2 Example of an RC-series response to two steps displayed with Matlab. In this

example tau=1second.

2. Plotting tool to help checking the chained responses obtained analytically

The analytical response of an RC-series circuit is obtained simply by filling the
constants in Eq.4, assuming that the source signals are described by rectangular pulses
(sequences of steps). In other words, one just has to find (i) the time constant of the
circuit, (ii) the times where the source changes, and (iii) the voltage values of the source.
In this section we show how to use the "rc_resp_guess" function to compare the
graphics of PSPICE simulations with the analytical derivations.

Example of a novel source signal composed by two rectangular pulses, 1[V] and 3[V],
changing at t=5s:

 >> rc_choose_vs(1)

Runing as before the simulation with PSPICE, one obtains the response graphic with:

 >> rc_resp_show

Guessing the response involves inputting a number of values:
 >> rc_resp_guess('2step')
 -- input first pulse response:
 start time [sec] = 0
 tau [sec] = 1
 Vc(t=ini) [Volt] = 0
 Vc(t=inf) [Volt] = 1
 -- input second pulse response:
 start time [sec] = 5

 tau [sec] = 1
 Vc(t=ini) [Volt] = 1
 Vc(t=inf) [Volt] = 3

The result of the previous input of data is a graphic that is superimposed on the active
figure (if you do not want the overlapped graphics, just create a new figure: >> figure).
See Fig.3.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

time [seconds]

V
ol

ta
ge

 [V
ol

ts
]

 0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

V
ol

ta
ge

 [V
ol

ts
]

time [seconds]

Fig.3 RC-series circuit, PSPICE response and user guess of the response.

3. Further testing

Making short charging or discharging cycles, e.g. cycles during just one time constant,
makes more challenging the derivation of the analytic responses, since in these cases the
capacitor never gets close to the steady state. Computing the values at the end of each
charge / discharge is therefore necessary to complete the chaining of the RC responses.

The function rc_choose_vs helps these kind of tests by allowing to define interactively
source signals having 2 rectangular-pulses or 3 rectangular-pulses. For example
defining two pulses with 3V and 0.5V amplitudes, changing at t=1sec, is done
interactively as:

 >> rc_choose_vs('2step')
 -- input values to define two pulses (0..t1 and t1..10s)
 t1=1
 Vs(0..t1)=2
 Vs(t1..10s)=3

Similarly for 3 rectangular-pulses
 >> rc_choose_vs('3step')
 -- input values to define three pulses (0..t1, t1..t2 and t2..10s)
 t1=2
 t2=3
 Vs(0..t1)=5
 Vs(t1..t2)=2
 Vs(t2..10s)=4

Alternatively, one can write single command with all the information:
 >> rc_choose_vs('2step', [1 3 0.5])

 >> rc_choose_vs('3step',[2 3 5 2 4])

In case you just want to display the signal before outputting it to PSPICE, you can add a
configuration structure, and obtain the results shown in Fig.4:
 >> rc_choose_vs('2step', [1 3 0.5] , struct('sh_signal',[]))
 >> rc_choose_vs('3step',[2 3 5 2 4] , struct('sh_signal',[]))

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig.4 Two source signals, composed by two or three rectangular-pulses, shown by the

rc_choose_vs function.

Testing the analytical RC-responses can be done once more using
 >> rc_resp_guess('2step')
 >> rc_resp_guess('3step')

Alternatively, the rc_*.m functions include also a basic simulator of the response,
freeing from the need of running the experiments using PSPICE. Note that in particular
the simulator only handles rectangular pulses, and is therefore not an option to simulate
general piecewise linear signals as PSPICE. The syntax to ask for a simulation is
compactly packed into a configuration structure (note the extra 's' in the string
"sh_signals"):

 >> rc_choose_vs('3step',[2 3 5 2 4],struct('sh_signals',[]))

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

V
ol

ta
ge

 [V
ol

ts
]

time [seconds]
Fig.5 A simulation result for three rectangular-pulses.

