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Abstract

We describe a method for visual based robot navigation
with a single omni-directional (catadioptric) camera. We
show how omni-directional images can be used to generate
the representations needed for two main navigation modal-
ities: Topological Navigation and Visual Path Following.

Topological Navigation relies on the robot’s qualitative
global position, estimated from a set of omni-directional im-
ages obtained during a training stage (compressed using
PCA). To deal with illumination changes, an eigenspace
approximation to the Hausdorff measure is exploited. We
present a method to transform omni-directional images to
Bird’s Eye Views that correspond to scaled orthographic
views of the ground plane. These images are used to locally
control the orientation of the robot, through visual servoing.

Visual Path Following is used to accurately control the
robot along a prescribed trajectory, by using bird’s eye
views to track landmarks on the ground plane. Due to the
simplified geometry of these images, the robot’s pose can be
estimated easily and used for accurate trajectory following.

Omni-directional images facilitate landmark based nav-
igation, since landmarks remain visible in all images, as
opposed to a small field-of-view standard camera. Also,
omni-directional images provide the means of having ad-
equate representations to support both accurate or qualita-
tive navigation. Results are described in the paper.

1. Introduction

In recent years visually-guided navigation [19] has been
approached in many different ways. Map-building using
image sequences from standard single or stereo cameras
has been explored in [2, 20]. Kosaka and Kak [18] com-
bined model based reasoning and Kalman filtering, which
requires a 3D geometric model of the environment. In [17],
sonar data is collected along corridors and used together

with visual data (simply vertical edges) to aid navigation.
Although previous research produced many interesting re-
sults, most systems required a large amount of computa-
tional power and still lacked the robustness required for
many real-world applications.

More recently, omni-directional cameras have been used
for navigation. This idea has much in common with biology
where the majority of insects and arthropods benefit from a
wide field of view [26]. Aihara et al. [1] use a sequence of
autocorrelated omni-directional images to determine global
position. However, as there is no simultaneous control of
local pose, they are forced to densely sample the environ-
ment with many images. Mobile robot self-localisation was
studied by [4], taking data from a colour omni-directional
camera as the input to a neural network, so the robot could
learn its environment. This system relied upon differently
coloured artificial landmarks in atest scene. Delahoche
[8] presented a system which merged odometry and omni-
directional image data using an Extended Kalman Filter.
The position of beacons in the absolute reference frame of
the environment were knowna priori.

Appearance based methods for navigation [13, 15, 21]
too, have been an active area of research. In [25], appear-
ance based methods and visual servoing are combined but
the image geometry, matching scheme and servoing strat-
egy were different from those detailed in this paper.

Our work focuses on the differing nature of the navi-
gational requirements (and environmental representations)
when covering long distances, as compared to those for
short paths. Again, if we look to biology, many animals
make alternate use of landmark-based navigation and (ap-
proximate) route integration methods [28]. For example,
we can walk along a city avenue, without ever knowing our
precise position along the way. However, to enter our hall
door, our movements demand more precision.

This path distance/accuracy tradeoffbetween long-
distance/low-precision and short-distance/high-accuracy
mission segments plays an important role in finding efficient
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solutions to the robot navigation problem. In this paper, we
denote these navigational modes asTopological Navigation
versusVisual Path Following.

Topological Navigation combines appearance based
methods [16, 27] to estimate the robot’s qualitativeglobal
position, and visual servoing to controllocally the robot
heading [29].Visual Path Followingis used for precise con-
trol of the robot along a trajectory pre-specified in image
coordinates, based on the landmarks tracked in the omni-
directional images [10].

Omni-directional images provide simple and adequate
representations to support these different navigation modes.
Additionally, the use of omni-directional images implicitly
allows us to deal with partial occlusion and by using a view-
based approximation to the Hausdorff measure we can cope
with illumination changes. All these aspects are illustrated
by the complete experiments described in this paper.

Section 2 describes our omni-directional vision system
and the method to unwarp omni-directional images to bird’s
eye (orthographic) views of the ground plane, which greatly
simplifies the navigation problem. Section 3 is devoted to
the problem of navigating using eigenspaces as topological
maps. In Section 4, we introduce the Visual Path Following
approach to control the robot motion, while in Section 5 we
present results from experiments combining both navigation
strategies. Finally, in Section 6 we draw some conclusions
and establish future directions of research.

2 The Omni-directional Vision System

The only sensor we use for navigation is an omni-
directional catadioptric camera [3], composed of a CCD
camera upward looking at asphericalmirror1. The cam-
era is mounted on top of the mobile platform with its axis
placed coincident to the platform’s rotation axis (see Fig.1).

(a) (b)

Figure 1. (a) Omni-directional camera. (b)
Camera mounted on a Labmate mobile robot.

In general, 3D lines in the environment are projected as
curves in an omni-directional image. However, we can use

1Although our sensor does not have a single projection centreas in [3]
we found that this is not a severe limitation to our approach.

models to correct some of the distortions and obtain the two
main types of unwarped images: panoramic images [5] and
Bird’s Eye Views.

TheBird’s Eye Viewis an orthographic projection of the
ground plane (e.g., corridors appear as image bands of con-
stant width). This kind of image may be obtained by radial
correction around the image centre2.

2.1 Bird’s Eye View of the Ground Plane

Points in the 3D space,P , are projected as image points,
p, by means of a projection operator,P:

p = P(P, θ) (1)

whereθ contains all the intrinsic and extrinsic parameters
of the catadioptric panoramic camera:

θ = [L f uo vo]
T .

The mirror radius can be measured easily, but the
camera-mirror distance,L, focal length,f and principal
point,(u0, v0), can only be determined up to some error:

δθ = [δL δf δu0 δv0]
T .

To estimateδθ we use a set of known 3D points,P i, and
the corresponding image projectionspi, then minimize the
following cost function:

δθ = arg min
δθ

∑

i

‖ pi − P(P i, θ0 + δθ) ‖2 (2)

Figure 2. Left: Original omni-directional im-
age. Right: Remapped bird’s eye view image.

This procedure defines a mapping between radial dis-
tances measured in the ground plane and the respective im-
age co-ordinates, and can be efficiently implemented by
means of a look-up table. It allows us to unwarp omni-
directional images tobird’s eye views- see Figure 2. For
a more detailed description of the omni-directional vision
system and the images unwarping techniques, see [10].

2This unwarping is done by software. Hicks [12] has shown how to ob-
tain ground plane unwarped images, directly from a custom-shaped mirror.



3 Navigating using Topological Maps

When walking in a city, humans do not rely on metric
knowledge, which is a good analogy to topological naviga-
tion. We adopt a similar approach for robot navigation, to
accomplish missions such asgo to the third office on the
left-hand side of the second corridor. The behaviours re-
quired in this case must allow the robot to travel along a
corridor, recognise the ends of a corridor, make turns and
identify (and count) door frames. These behaviours are im-
plemented by means of an appearance based system and a
visual servoing strategy.

The topological map is a graph that allows the determi-
nation of the robot’s globalqualitativeposition within its
environment.Nodesrepresent places (identified by images)
where actions are undertaken (e.g. turn left). To navigate
alonglinks, we assume that some environmental image fea-
tures can be used for servoing (e.g. follow the road).

3.1 Position Estimation

The number of images required to represent the environ-
ment is very large and one needs to compress this infor-
mation. We used alow dimensional eigenspacerepresenta-
tion [22], constructed using Principal Component Analysis.
This image eigenspace and their topological relations form
the map we use for navigation.

The problem of estimating the robot position in the con-
text of our topological map is that of determining the ref-
erence image,Ik that best matches the current image,I
within the low dimensional eigenspace. Each image,Ik, in
the initial training set is associated with aqualitativerobot
position in the topological map (e.g. half way along the
corridor).

Each acquired image,I, is first projected into the
eigenspace to obtain the corresponding coefficient vector,
C. A real timecomparison between this image and all the
reference images of the topological map is computed as fol-
lows:

dk =

∑M
j=1

ρk
j

2

λj
∑M

j=1
λj

where ρk
j =

∣∣cj − ck
j

∣∣

The value ofdk expresses the distance between the cur-
rent image,I and the various reference images,Ik. The
value ofρk

j expresses the distance between imagesI andIk

along thejth direction of the eigenspace. This distance is
weighed by the eigenvaluesλj to express the relative im-
portance of this direction in the entire eigenspace. The po-
sition of the robot is that associated with the basis image,
Ik, which yields the lowest distance,dk.

3.2 Dealing with Illumination Changes

When using intensity images to build a topological rep-
resentation of the environment the robot is prone to miscal-
culating its location wherelarge non-uniformdeviations in
illumination occur (see Fig.3).
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Figure 3. Top: images acquired at 5pm and
11am. Bottom: image intensity shows large
non-uniform deviation in brightness (the thin
line relates to the first image).

This can be overcome by using edge images to repre-
sent the environment. Matching is achieved by using an
eigenspace approximation to theHausdorff Fraction[14].
The Hausdorff distance [24] (of which the Hausdorff frac-
tion is a subset) is a technique whereby one can measure
the distance between two sets of points, in our case edge
images. The eigenspace approximation is built as follows:
Let Im be an observed edge image andId

n be an edge image
from the topological map, arranged as column vectors. The
Hausdorff fraction,̄h(Im, Id

n), which measures the similar-
ity between these images, can be written as:

h̄(Im, Id
n) =

IT
mId

n

‖Im‖2

An image, Ik can be represented in a low dimen-
sional eigenspace [22, 29] by a coefficient vector,Ck =
[ck

1
, · · · , ck

M ]T , as follows:

ck
j = eT

j .(Ik − Ī).

Here, Ī represents the average of all the intensity im-
ages and can be also used with edge images. Thus, the
eigenspace approximation to the Hausdorff fraction can be
efficiently computed as:

̂̄h(Im, Id
n) =

CT
mCd

n + IT
mĪ + IdT

n Ī − ‖Ī‖2

‖Im‖2

To test this view-based approximation we collected a se-
quence of images, acquired at different times, 11am and



5pm, near a large window. Figure 4 shows the significant
changes in illumination, especially near the large window
at the bottom left hand side of each omni-directional image.
Even so, the view based approximation can correctly de-
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Figure 4. (a) An omni-directional image ob-
tained at 11:00, (b) one obtained at 17:00; (c)
An edge-detected image and (d) its retrieved
image.

termine that the unknown image shown in Figure 4(a) was
closest to the database image shown in Figure 4(b), while
PCA based on brightness distributions would fail. For com-
pleteness, Figure 4 (c) and (d) shows a run-time edge image
and its corresponding retrieved image using the eigenspace
approximation to the Hausdorff fraction.

Figure 5 shows the robot’s qualitative position estimated
over time, using both gray-level distributions (left) and the
Hausdorff fraction (right). The images for the topological
localisation were acquired at 11am and experiments were
conducted at 12pm and 5pm. Only when using the Haus-
dorff fraction did we obtain similar results, independently
of the illumination conditions.
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Figure 5. Position estimation with large
non-uniform illumination changes (a) using
brightness distributions and (b) the Haus-
dorff fraction.

3.3 Dealing with Occlusions

A major advantage of using omni-directional images is
that we can deal with a relativelydynamicenvironment,
where people partially occlude the robot’s view. When a
person is as close as possible to the robot (see Figure 6), the
occlusion is not sufficiently large so as to cause the robot to
misinterpret its topological position. Using the low dimen-
sional eigenspace approach the closest image is still cor-
rectly determined. An alternative approach is taken by [6],
where a number of small image windows (e.g., 9 x 9 pix-
els) are used to cope with occlusion. The success of their
method depended on the number and size of windows used.
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Figure 6. (a) A person close to the robot. The
retrieved image (b) and the input image cor-
responding to the estimated position in the
topological space (c).

3.4 Corridor Following Behaviour

The remaining problem to be solved for effective naviga-
tion using the topological map is that of defining a suitable
vision-based behaviour for corridor following. Since most
corridors have parallel guidelines, we can exploit this infor-
mation to drive the robot along the corridor.

Visual feedback from the omni-directional camera is
used to keep the robot centered in the corridor. This visual
feedback is in the form of the extracted corridor guidelines,
from bird’s eye viewimages. The servoing task is signifi-
cantly simplified, because these images become a scaled or-
thographic projection of the ground plane co-ordinates. We
use a simple kinematic planner to controllocally the robot
position and orientation in the corridor, while maintaining a
forward trajectory. Details on the control law can be found
in [29].

In order to track the corridor guidelines, we first find
edges within pre-defined bounding boxes and then perform
robust line fitting using a procedure based on RANSAC [9].
Predicting the position of these bounding boxes is a deter-
minant for the robustness of the tracker, which could oth-
erwise start tracking door frames and other image line seg-
ments.



Figure 7 shows a sequence of bird’s eye view images ac-
quired during tracking. The prediction is very accurate and
vastly improves the probability of extracting the corridor
guidelines rather than erroneous data such as door frames.
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Figure 7. Ground plane view of the robot’s
orientation and translation over time.

4 Visual Path Following

In this section, we outline the role of omni-directional vi-
sion forVisual Path Following, used for local, precise navi-
gation. Examples of such situations include door traversal,
docking and navigating inside rooms or very cluttered en-
vironments, where a reference trajectory must be followed
accurately.

4.1 Feature tracking and self-localisation

We utilise bird’s-eye view images to track environmental
features so as to estimate the robot’s position/orientation or
to drive the robot along a given trajectory.

The features selected for tracking were image corners
defined by the intersection of edge segments [11], which
can usually be found in indoor environments. The detection
process benefits from a larger spatial support, as opposed
to local corner detection filters, thus leading to increased
accuracy and stability. Figure 8(a) shows a corner pointE

defined as the intersection of linesAB and CD. In this
way, corners do not necessarily have to correspond to image
points of extreme changes in brightness. This approach can
deal with information loss due to occlusion or filtering (e.g.
the “roundness” of corners due to image smoothing).

We track corner points by tracking the corresponding
support edge lines. Each edge segment is tracked by search-
ing along its perpendicular direction and using local photo-
metric and geometric criteria, combined with a robust fitting
procedure [9]. Figure 8(b) demonstrates how the segments
AB andCD at timet, are tracked to the segmentsA′B′ and
C ′D′, respectively, in the image at timet + 1.

After determining the new corner positions, we estimate
a 2D rigid transformation between two successive bird’s eye
views, yielding the robot position and orientation relative to
some pre-defined co-ordinate system.
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Figure 8. (a) Corner point E is defined as the
intersection of lines AB and CD; (b) Seg-
ments AB and CD are adjusted to A′B′ and
C ′D′.

Figure 9 illustrates the tracking (top) and pose estima-
tion (bottom) process, using a known pattern located on the
ground plane as a navigational landmark. The chosen land-
mark is defined by eight line segments which intersect at
eight corner feature points. At the current stage of imple-

Displayed area: 300pix by 230pix.

Figure 9. Top: feature tracking at three time
instances (dashed and solid lines show the
landmark’s original and final positions).
Bottom: robot pose calculated over time, ex-
pressed in the world co-ordinate system de-
fined by the landmark.

mentation, the relevant features to track and the feature co-
ordinate system are initialised by the user. In order to detect
the loss of tracking during operation, the tracking process
is continuously self-evaluated by the robot. This evaluation
is based on gradient intensities obtained within specified ar-
eas around the landmark edges. If these gradients decrease
significantly compared to those expected, a recovery mech-
anism is immediately launched.

Given the robot pose and a reference trajectory, we de-
signed a control scheme that drives the distance and orien-
tation errors to zero, while maintaining a forward velocity
(see [7, 10] for details).



5 Experimental Results

All experiments were undertaken with a TRC Lab-
mate from HelpMate Robotics Inc., equipped with an
omni-directional vision system (Figure 1(b)) built in-house.
Greyscale images were captured with a full resolution of
768x576 pixels, and sub-sampled to 128x128 images for
PCA and 600x600 for visual servoing and visual path fol-
lowing. All the processing was carried out on-board the
Labmate mobile platform by a Pentium II 350MHz PC.

5.1 Navigating with a Topological Map

A series of experiments were conducted to test the nav-
igational behaviours required to perform global missions
using the topological map. The topological map was built
with omni-directional images, acquired every 50 cm, along
the corridors. At corresponding distances, bird’s eye views
were used for local pose control. Reference positions were
ordered according to the direction of motion, thus maintain-
ing a causality constraint.

The first tests show that appearance based methods can
reliably provide qualitative estimates of the robot’s position
in the world, using a single corridor as an example. For this
purpose we acquired a set of prior images,P , and ran the
robot in the corridor to acquire a different set of run-time
images,R. Figure 10 shows the distancedk (see Section 3)
between the prior and run-time images,P andR.
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Figure 10. A 3D plot of images acquired at
run-time, R versus those acquired a priori, P.

Theglobal minimum, at each time instant, is the correct
estimate of the robot’s current topological position. The
error surface degrades gracefully in the neighbourhood of
the correct estimates. Local minima appear because some
distant areas of the corridor look very similar, and can be
avoided by restricting the search space to images close to
the previously estimated position. To drive the robot along
a central trajectory in the corridor, we used the servoing ap-
proach described in Section 3.

Figure 11 shows results from robot navigation along a
section of the 7th floor at ISR. The distance traveled was
approximately 21 metres. Odometry was used to display
the path graphically.

Figure 11. One of the paths traveled by the
robot at our research institute. The total dis-
tance traveled was approximately 21 metres.

These results show that the proposed control scheme can
successfully drive the robot along the corridor. When the
robot arrives at the end of a corridor, it can switch to a dif-
ferent behaviour. In this example the behaviour launched at
the end of each corridor is simply to perform a 90 degree
turn, in order to proceed to the next corridor.

5.2 Visual Path Following Experiments

TheVisual Path Followingapproach is used to navigate
inside a room, which requires a more precise localisation
and control of the robot trajectory, as compared to the pre-
vious example of long-distance missions.

A reference trajectory was specified in image co-
ordinates, relative to a single landmark composed of two
rectangles. The mobile robot moves under closed loop con-
trol, based on input from the omni-directional camera, as
described in Section 4.

Figure 12(a) shows tracking results to illustrate the con-
venient use of omni-directional vision for landmark track-
ing, in spite of its large azimuthal movement relative to the
robot. Figure 12(b) shows the reference trajectory (dashed
line) and results of visual self-localisation (dotted line). Fig-
ure 12(c) shows the mobile robot after completion of the
desired navigational task.

(a) (b) (c)

Figure 12. Visual path following experiment.



5.3 Integrated Experiments

The concluding experiment integrates global and local
navigational tasks, by combining theTopological Naviga-
tion andVisual Path Followingparadigms.

The mission starts in the Computer Vision Lab. Visual
Path Following is used to navigate inside the Lab, traverse
the Lab’s door and drive the robot out into the corridor.
Once in the corridor, control is transferred to the Topolog-
ical Navigation module, which drives the robot all the way
to the end of the corridor. At this position a new behaviour
is launched, consisting of the robot executing a 180 degree
turn, after which the topological navigation mode drives the
robot back to the Lab entry point.

Figure 13. Experiment combining visual path
following for door traversal and topological
navigation for corridor following.

During this backward trajectory we use the same image
eigenspaces as were utilised during the forward motion by
simply rotating, in real-time, the acquired omni-directional
images by 180 degrees. Alternatively, we could use the
image’s power spectrum or the Zero Phase Representation
[23]. Finally, once the robot is approximately located at the
lab entrance, control is passed to the Visual Path Follow-
ing module. Immediately it locates the visual landmarks
and drives the robot through the door. It follows a pre-
specified path until the final goal position, well inside the
lab, is reached. Figure 13 shows an image sequence to re-
late the robot’s motion during this experiment.

In Figure 14(a) we used odometric readings from the best
experiment to plot the robot trajectory. When returning to
the laboratory, the uncertainty in odometry was approxi-
mately 0.5m. Thus, door traversal would not be possible
without the use of visual control. Figure 14(b), shows the
actual robot trajectory, after using ground truth measure-
ments to correct the odometric estimates. The mission was
successfully accomplished.

This integrated experiment shows that omni-directional
images are advantageous for navigation and support dif-
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Figure 14. A real world experiment combin-
ing Visual Path Following for door traversal
and Topological Navigation for long-distance
goals. Odometry results before (a) and af-
ter (b) the addition of ground truth measure-
ments.

ferent representations suitable both for Topological Maps,
when navigating between distant environmental points, and
Visual Path Following for accurate path traversal. Addi-
tionally, we have described how they can help in coping
with occlusions, and with methods of achieving robustness
against illumination changes.

6 Conclusions & Future Work

In this paper, we presented a method for visual-based
navigation using an omni-directional camera. One of the
core observations is that different navigation problems have
distinct requirements in terms of processing, accuracy and
goals, that should be taken into account when designing an
efficient navigation system.

We distinguished between missions that involved travel-
ing long distances, without imposing strict requirements on
the knowledge of robot position, and those where the robot
must follow a pre-specified trajectory accurately: Topolog-
ical Maps vs Visual Path Following.

Another key aspect is that omni-directional vision can
offer the required representations to support these different
navigation strategies. In particular, we described a method
for obtaining abird’s eye viewof the ground floor, that
greatly simplified navigation problems, by removing per-
spective effects. Also, landmark based navigation is facili-
tated since landmarks remains visible in spite of significant
rotations of the robot.

Integrated experiments combing both methodologies
were presented. This integration is a powerful approach



that, in our opinion, leads to an overall system which ex-
hibits improved robustness, scalability and simplicity.

In the future, we will apply this methodology in more
complex environments and address the problem of auto-
matic extraction of relevant landmarks. Self-localisation
will be improved to take full advantage of omni-directional
images by using multiple widely separated landmarks.
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