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José Santos-Victor2 Luis Montano1

2Instituto de Sistemas e Robótica,
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Abstract— This paper presents a method to cooperatively
localize pairs of robots fusing bearing-only information pro-
vided by a camera and the motion of the vehicles. The
algorithm uses the robots as landmarks to estimate the
relative location between the platforms. Bearings are obtained
directly from the camera, as opposed to measuring depths
which would require knowledge or reconstruction of the world
structure.

We present the general recursive Bayes estimator and three
different implementations based on an extended Kalman filter,
a particle filter and a combination of both techniques. We
have compared the performance of the different implemen-
tations using real data acquired with two platforms, one
equipped with an omnidirectional camera, and simulated
data.

Keywords: Cooperative robots, bearing-only measure-
ments, localization.

I. INTRODUCTION

In the last years cooperative robotics has received con-

siderable attention. Teams of robots are able to overcome

the limitations of single robots and allow to attack more

difficult tasks. Furthermore, they increase the degree of

autonomy and robustness by introducing redundancy. How-

ever, the use of teams of robots increases the complexity of

the system. New challenges appear providing new research

areas. In this context cooperative localization is considered

one of the basic capabilities required for autonomous

operation of teams of robots.

In this paper we address the problem of cooperatively

localizing two robots using bearing-only measurements

and the motion of the robots. When the robots navigate

based on proprioceptive sensors, e.g. odometry, they build

and maintain their own, unrelated, referential frames. By

providing exteroceptive sensors, such as omnidirectional

cameras that track other robots, the various referential

frames can be fused to a single one. The common ref-

erential frame opens the way for cooperation and sharing

of the information acquired by each of the robots.

Omnidirectional cameras allow localizing robots in a

360o azimuthal field-of-view and extracting their bearing

(azimuthal) locations. Bearings are obtained directly from

omnidirectional cameras as raw data, without requiring

any smoothness or rigidity assumptions about the scene-

objects. Hence, extracting bearings is a simple task as

compared to e.g. vision-based SLAM ([3], [25]), stereo

matching and reconstruction ([4], [28]), baseline detection

and estimation ([12]), ground-plane based navigation, or

other depth reconstruction techniques. In order to account

for the lack of depth and orientation measurements, we

propose to use the motion of the vehicles (odometry

readings or motion commands) together with the bearing

observations. Combining both types of information allows

us to estimate the initial relative location of the platforms

and keep track of it.

We have implemented our localization algorithm within

a Bayesian framework. We have evaluated three implemen-

tations of the classical Bayes filter: an extended Kalman

filter, a particle filter and a combination of both techniques.

We have performed several tests in our laboratory to

validate the method. The results suggest that we can fuse

the motion of the platforms with the bearing measurements

to estimate their relative location.

This paper is organized as follows. Next Section presents

the related work. Section III describes the problem. In

Section IV and V we derive the Bayesian estimator for

our problem and we describe our implementation. The

experimental results are presented in Section VI.

II. RELATED WORK

In a computer vision framework the relative localization

of two robots corresponds to an object-pose estimation

problem. Seminal work on object-pose estimation assumed

known geometrical object-structures useful both for object

detection and tracking [14], [8], [13]. In order to deal

with the uncertainty and noise in the measurements, the

approaches for tracking and estimating the pose of the

objects were based on stochastic models and algorithms,

e.g. Extended Kalman Filter.

Many research works conducted in the last years show

that the assumptions of rigidity and knowledge of the

object-structure can be relaxed in tracking applications. For

example Murase [17] proposed appearance based models,

i.e. models based on images, to represent and recognize

objects at various poses and illumination conditions. Blake

[2] proposed active contours to track objects with time

varying silhouettes based on the condensation algorithm.

Recently, Okuma [20] proposed a boosted particle filter

for tracking and detection of hockey players based on the

color histograms associated to their uniforms.
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Fig. 1. Interpretation of the relative location between to moving
platforms. (a) world fixed reference system (b) robocentric approach.

The most recent references show that an object can be

tracked, without knowing its structure, using other object-

features such as image corners, contours, patterns, color

patches, etc. A number of the tracking methods do not

provide pose estimation, due to the fact that feature models

do not contain structure information. However they obtain

the location of the object within the image. In the present

work, we consider extracting bearing information from the

location of one robot in the image acquired by another

one and combining it with the motion of both platforms to

estimate their relative localization.

On the other hand, cooperative localization has been

an active research area during the last years in the

robotic community. There exist different approaches de-

pending on several aspects as the information used

(map availability, static/dynamic features) or the multi-

robot architecture (communication capabilities, central-

ized/decentralized). Related to this paper several authors

have used the robots as landmarks ([24], [10], [16]). In

the absence of static references these methods estimate the

relative pose among the robots instead of their location on a

global reference system. However, all these algorithms use

range-bearing sensors that provide an accurate estimation

of their relative positions.

Some authors have used bearing-only measurements to

estimate the location of the robots or the objects around

them [19], [23], [26], [22]. The proposed algorithms usu-

ally use probabilistic techniques to fuse the information

provided at the same time by different sources with known

uncertain locations. To increase the robustness of an static

object tracker Huster [11] fuses bearing information from

a monocular camera and inertial rate sensors. In our case

we want to compute the relative location of two moving

platforms. Using only bearing information of the position

of the robots makes the problem non observable and we

need to incorporate some extra information, the motion of

the platforms, to turn it solvable.

Finally, bearing-only information has also been studied

in other tracking contexts. For instance, Bar-Shalom in [1]

shows how to apply the Extended Kalman Filter to estimate

the location of a constant velocity moving target and how

the trajectories of the observer improves the resulting esti-

mation. Bearing-only measurements have also been used to
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Fig. 2. Unobservable target trajectory: infinite trajectories generate
the same bearing measurements, z(.). The figure shows three of these
trajectories.

show improvements on particle filters for uniform straight

motion of the target [18]. Finally, Trawny [27] shows how

different motions result in different localization accuracies

and optimizes the motion of the members of the team to

improve the localization capabilities.

III. PROBLEM DESCRIPTION

We are interested on estimating the relative location

x of two moving platforms. As we do not have any

static reference we use a robocentric approach [10]. We

choose one of the platforms as the reference system, the

observer, and compute the relative pose of the other one,

the target, with respect to it. In this reference system

the observer remains static while the target motion is the

composition of the motion of both platforms. Figure 1(a)

depicts the relations between the locations of two moving

platforms. The observer and target motion is uo and ut

respectively. When the reference system moves with the

observer (Figure 1(b)) the final location of the target is

the result of the combination of the movements of both

platforms uot.

According to the previous description our problem is

equivalent to estimating the position of a moving target

from a stationary platform. Bearing-only measurements of

a moving target do not contain enough information to

estimate its position [1]. Let pt = (xt, yt) be the position

of the target and po = (xo, yo) the position of the observer.

We will denote po(k) to the position of the target at time

step k. The observations are bearings with respect to a

reference direction of the target at different points in time,

zk = tan−1 yo(k) − yt(k)

xo(k) − xt(k)
+ wk

where wk is the measurement noise at time k. Due to

the relative motion of the target, which is a combination

of its own motion and that of the observer, there exist

infinite possible locations of the platform satisfying the

measurement equation. Figure 2 illustrates some of the

possible trajectories for a set of three observations.



One, therefore, needs to incorporate some more informa-

tion to compute the relative pose of the platforms. If one

knows the relative motion of the target, its location can

be estimated using three measurements and triangulation

techniques. The relative motion restricts the set of possible

trajectories to a single one. In order to incorporate the

motion of the target one must estimate not only its position

but the whole location including the orientation xt =
(xt, yt, θt).

For an stationary observer there is a degenerated case

when the target moves on a straight line toward the

observer. In the case of two moving robots there must

be some relative displacement between the platforms. If

the vehicles remain static, just rotate, move parallel one

to the other or move along the line joining them, the

bearing measurements do not change. Moreover, depending

on the motion of the platforms the amount of information

provided by the observations differs ([1], [21], [27]).

Finally, the method has to deal with the uncertainties and

noises in the system. As pointed out before, the sensor

measurements provide an initial relative location of the

robots with a high uncertainty in the range and orientation

of the target platform. Therefore, one has to be able to cope

with a big initial uncertainty. In the next Section we present

a Bayesian estimation technique to estimate the relative

pose of two moving vehicles using bearing measurements

and the trajectories of both vehicles.

IV. RELATIVE POSE ESTIMATION

We assume that the robots are able to measure their

own displacement. Let uk−1 be the motion of the robot

between time k− 1 and k. The observer robot is equipped

with sensors that provide bearing measurements zk of the

position of the other robot at time k. We assume that

the robots are synchronized and model the synchronization

error as another source of noise in the system.

Let ro be the observer. We will denote zk
o the observa-

tions and uk
o the odometry readings obtained by ro at time

k. Zk
o = {z1

o , ..., zk
o} and Uk

o = {u0
o, ...,u

k
o} represent

the observations and odometry readings of the observer up

to time k. The target motion measurements up to time k

are Uk
t = {u0

t , ...,u
k
t }. Our objective is to estimate the

relative location x = (x y θ) of robot rt, the target, with

respect to robot ro based on the information available up to

time k. Thus, the posterior distribution we are estimating

is p(xk|Z
k
o , Uk−1

o , Uk−1
t ) and the corresponding recursive

Bayes filter is,

p(xk|Z
k
o , Uk−1

o , Uk−1
t ) ∝ p(zk

o |xk) (1)

p(xk | xk−1,Z
k−1
o ,Uk−1

o ,Uk−1
t )

where p(xk | xk−1,Z
k−1
o ,Uk−1

o ,Uk−1
t ) is obtained

from the posterior of the previous step and the motions

given by uk−1
o

and uk−1

t
,

p(xk | xk−1, Z
k−1

o , U
k−1

o , U
k−1

t ) = (2)
∫

p(xk|xk−1,u
k−1

o ,uk−1

t )p(xk−1|Z
k−1

o , Uk−2

o , Uk−2

t )dxk−1

The previous formulation assumes independent Markov

processes for both the observation zk
o and the evolution of

x. Equation 1 estimates the posterior at time k using the

posterior computed at time k − 1, a motion model p(xk |
xk−1,u

k−1
o ,uk−1

t ) and a measurement model p(zk
o |xk).

V. IMPLEMENTATIONS OF THE BAYES ESTIMATOR

In this section we provide three different implementa-

tions for equation (1): the classical Extended Kalman Filter

(EKF), a sampled based approach known as particle filters

(PF) and a combination of both techniques (PF-EKF).

The EKF assumes Gaussian distributions and noises and

requires to linearize the process and measurement models.

The lack of an accurate initial relative location makes the

EKF unappropriate for the first stages of the estimation.

In other words the EKF may diverge due to the initial

uncertainty and the linearization error if the measurements

do not contain enough information.

On the other hand particle filters do not require any of

the previous assumptions and are able to represent any

kind of distribution given a sufficient number of particles.

However, they are computationally more expensive and

introduce a discretization error which depends on the

number of particles used. Therefore, we propose an hybrid

approach (PF-EKF) that uses a particle filter in the first

steps and switches to an EKF when the distribution of the

particles is close to a Gaussian.

To describe the motion of the platforms we use two

operators over reference systems: the composition ⊕ and

the inversion ⊖ of locations,

x1 ⊕ x2 =





cos θ1x2 − sin θ1y2 + x1

sin θ1x2 + cos θ1y2 + y1

θ1 + θ2



 (3)

⊖x1 =





− cos θ1x1 − sin θ1y1

sin θ1x1 − cos θ1y1

−θ1



 (4)

Using these operators the movement of the target plat-

form seen from the observer is a combination of the

movements of each platform(see Figure 1(a)),

xk = f(xk−1,u
k−1
o ,uk−1

t ) = ⊖uk−1
o ⊕ xk−1 ⊕ uk−1

t

where ut = (dxt, dyt, dθt) is the motion of the target

platform and uo = (dxo, dyo, dθo) is the motion of the

observer platform. Note that uk
t and uk

o are noisy mea-

surements of the true displacement of the robot corrupted

with noises vk
t and vk

o respectively. On the other hand the

observation model is, as presented in Section III,

zk
o = h(x) + wk = tan−1 y(k)

x(k)
+ wk (5)

where wk is the measurement noise.
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Fig. 3. (a) observation model for the particle filter implementation, (b) initial distribution of particles, (c) the distribution after a given number of
steps is close to a Gaussian

A. Extended Kalman filter implementation

In this section we implement Equation (1) using an

EKF. The EKF framework models all the random variables

as Gaussians and approximates the nonlinear process and

measurement equations with the partial derivatives of the

nonlinear functions. We denote x̂ to the current estimate

of the state vector x and P to the associated covariance

matrix. The odometry and bearing measurements are also

represented by their realizations, ût, ûo, ẑo. The measure-

ments are corrupted by independent white Gaussian noises

with covariance matrices Vt, Vo and R respectively.

We use a first order approximation for the process and

measurement models,

f(x,uo,ut) ≈ f(x̂, ûo, ût) + ∇f





x − x̂

uo − ûo

ut − ût





h(x) ≈ h(x̂) + ∇h(x − x̂)

where ∇f is the Jacobian of the function f with respect

to the state vector x and the odometry readings uo and

ut and ∇h is the Jacobian of the function vector h with

respect to the state vector x evaluated at the current state

x̂k and motions ûo and ût.

Using the previous Jacobians we provide next the re-

sulting Kalman filter equations for time k. The predicted

relative location x̂k|k−1 using the linearized process model

and its associated covariance matrix Pk|k−1 are,

x̂k|k−1 = f(x̂k−1, û
k−1
o , ûk−1

t )

Pk|k−1 = ∇f





Pk−1 0 0
0 Vok

0
0 0 Vtk



∇T
f

with ∇f evaluated at x̂k−1, ûk−1
o

and ûk−1

t
. The

corresponding update step is,

Sk = ∇hPk|k−1∇
T
h + R, Wk = Pk|k−1∇

T
h S−1

k

x̂k = x̂k−1 + Wkvk, Pk = Pk|k−1 − WkSkW
T
k

where vk = ẑk
o − h(x̂k|k−1) is the innovation and the

Jacobian ∇h is evaluated at x̂k|k−1.

B. Particle filter implementation

Particle filters are sequential Monte-Carlo techniques

to estimate posterior distributions [5]. They represent the

distributions by a set of M samples S = {x
[1]
k , ...,x

[M ]
k }.

The usual way to implement the recursive Bayes estimator

of Equation (1) is to use the posterior obtained in the

previous step k − 1 and the motion model to guess the

distribution at time k. For each sample x
[i]
k−1 a new sample

x
[i]
k is generated from the possible locations described by

uk−1
o and uk−1

t ,

sample x
[i]
k from p(xk | x

[i]
k−1,u

k−1
o ,uk−1

t ) (6)

The set of all these samples conforms what is known as

the proposal distribution. For each robot we use a motion

model similar to the one described in the Carnegie Mel-

lon Navigation toolkit [15]. Note that we are composing

two uncertain motions. The number of particles must be

sufficient to sample all the possible locations induced by

both motions requiring more particles than a single one.

The samples from the proposal are distributed according

to p(xk | Zk−1
o , Uk−1

o , Uk−1
t ) and do not include the

information of the last observation zk
o . To take into account

the difference between the proposal distribution and the

target distribution p(xk|Z
k
o , Uk−1

o , Uk−1
t ) the samples are

weighed according to their likelihood,

α[i] =
target

proposal
∝ p(zk

o |x
[i]
k ) (7)

The new set of particles approximating

p(xk|Z
k
o , Uk−1

o , Uk−1
t ) is then generated by sampling

from the proposal distribution according to the importance

factors α[i].

The measurement model is the likelihood of the obser-

vation given the current state. We model the noise of each

bearing as an independent zero mean Gaussian distribution

with a standard deviation σw,

p(zk
o |x

[i]
k ) = N(zo;h(x

[i]
k ), σw)

Figure 3(a) shows the likelihood model for a bearing

measurement corresponding to the x axis. The darker the

location is, the lower the likelihood associated to it.
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Fig. 4. (a) Image acquired by the Labmate. (b) Labmate and Scout robots. (c) Ground truth: transformation of a perspective to an orthographic view
of the ground plane; the chess patterns indicate the points used for calculating the dewarping homography. (d) Ground truth trajectories computed from
the external camera.

C. Combining both approaches

In order to benefit from the advantages of each method

we propose to use a combination of both techniques.

During the first steps of the estimation process a Gaussian

distribution does not approximate well the uncertainty. As

we do not have any prior information about the rela-

tive location of the platforms, we use the measurements

to initialize the filters. According to the measurement

equation (5) we do not have any information about the

distance between the platforms or their relative orientation.

Therefore we use a particle filter to sample all the possible

initial locations (figure 3(b)).

After a certain number of steps the particles will usually

converge to an unique mode corresponding to the correct

relative pose. We periodically try to fit a Gaussian to the

current particle filter. When the particles are close to a

Gaussian we switch to an EKF to track it (Figure 3(c)).

In order to recover from potential failures, the normalized

innovation squared test [1] is used. If the test fails, a new

particle filter is initialized using the last measurements.

This strategy combines the computational efficiency of

the Kalman filter with the more powerful representation ca-

pabilities of the particle filters needed in the initial steps of

the algorithm due to the use of bearing-only measurements.

The complexity of the EKF is O(m2) where m = dim(x).
On the other hand the complexity of the PF is O(N) with

N the number of particles. As m remains constant and

is much smaller than the required number of particles N ,

the EKF implementation is computationally much more

efficient for our problem.

VI. EXPERIMENTS

We have implemented our method on two robots, one

equipped with an omni-directional camera, to evaluate the

method presented in the previous sections. We also con-

ducted an extensive test of the algorithm using simulated

data. The main purpose of these simulated experiments was

to analyze the performances of the EKF, the PF and the PF-

EKF in terms of robustness and precision. In this section

we first present our experimental setup, then the results

obtained with simulated data and finally those obtained

with real data.

A. Setup

The robots, a TRC Labmate from HelpMate Robotics

Inc and a Nomadic’s Scout, are differential drive mobile

platforms (see figure 4(b)). The Labmate is equipped with

an omnidirectional camera based on a spherical mirror.

The images acquired by the omnidirectional camera

are dewarped to 360o-wide panoramic views. The de-

warping is just a Cartesian to polar transformation when

the camera and the mirror are vertically aligned [7]. For

general mountings of cameras and mirrors on robots, a

projection operator, P(r;ϑ), mapping world, r to image

points is fitted to the cameras by a calibration procedure

that retrieves the camera parameters ϑ. Given P(r;ϑ) and

an omnidirectional image, I(m) the panoramic view, p

is obtained as the image of a 3D cylinder, C i.e. p =
I(P(C;ϑ)).

We model the omnidirectional camera with a projection

operator based on the single projection centre model of

Geyer and Daniilidis [9]. An omnidirectional camera based

on the spherical mirror does not have the single projection
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Fig. 5. Estimated trajectories using real data acquired by the robots. (a) PF implementation, (b) PF-EKF implementation (c) Position error at each
iteration for both implementations.

centre property, however it approximates that property pro-

vided that the world structure is much larger than the mirror

size [6]. Using the projection operator for dewarping to

the panoramic view, instead of just transforming the image

from Cartesian to polar coordinates, allows eliminating the

errors in the azimuthal readings due to any camera-axis-

deviation from the vertical direction. The omnidirectional

camera produces 768 × 576 [pix] omnidirectional images,

which are dewarped to 1091× 148 [pix] panoramic views

(see Figure 4(a)).

The panoramic views allow the Labmate to track the

Scout, more precisely measuring its azimuthal location

(bearing). This process is simplified as the Scout carries

a light that can be easily detected in a region of interest.

At the same time the robot acquires an image, the odometry

is also observed. The data acquisition rate is about 2Hz.

We used the Network Time Protocol to synchronize the

platforms. The accumulated drift during the experiments

was always less than one frame.

In order to obtain the ground truth of the trajectories of

the robots we use one external camera placed in a corner

of the room close to the ceiling. The perspective view of

the room is transformed to an orthographic view of the

ground plane using an homography. The homography is

computed based on four points of the ground plane with

known real-word coordinates (figure 4(c)). The robots are

tracked by hand, marking in the image of the ground plane

their locations. The heading of the Labmate is obtained

from the orientation of its square-shaped footprint.

B. Simulations

We first tested our algorithm using simulated data.

The main objective of these tests was to evaluate the

accuracy and robustness of the EKF, the PF and the PF-

EKF implementations. We generate 200 datasets where the

robots moved at random speeds inside a 10x10 squared

room. Both the bearing measurements and the odometry

readings were corrupted with Gaussian noise. We limited

the detection of the other robot to a maximum range of

8 meters and generate observations at 2Hz. The PF and

PF-EKF implementations used 1000 particles.

The KF implementation is very sensitive in the first steps

due to the big uncertainty in the initial relative location. As

expected it does not always converge to the good solution.

It only converged in 40% of the simulations but in most of

them the initialization of the filter was close enough to the

true relative location. On the other hand the PF and PF-

EKF converged to the solution for all the datasets. Table I

summarizes the results for the PF and PF-EKF.

µx σx µy σy µθ σθ

PF 0.11m 0.11m 0.10m 0.16m 0.07rad 0.08rad

PF-EKF 0.10m 0.15m 0.11m 0.18m 0.05rad 0.06rad

TABLE I

MEAN AND STD OF THE ERRORS USING SIMULATED DATA

The results show that both implementations are able to

estimate the relative position with similar accuracy. It is

worth to note that the algorithm uses bearing measurements

of moving landmarks. These measurements only contain

information about one of the three state variables. In addi-

tion, the accuracy of the estimation depends on the relative

motion of the platforms and on the distance between them.

The measurement model is less precise as the distance

increases. The standard deviations obtained in simulations

reflect the variations of the localization error due to the

influence of the distance between the platforms and their

relative motion.

The differences between both methods are not statisti-

cally significant. However, after switching to an EKF the

PF-EKF is much faster and it did not loose track of the

other robot. The mean execution times per iteration are 109

milliseconds for the PF and 0.13 milliseconds for the PF-

KF. These times correspond to a Matlab implementation

on a Pentium IV at 1.2 Ghz and illustrate the different

complexities of each implementation.

The results suggest that the PF is necessary only in

the first steps of the algorithm to cope with the non

Gaussian uncertainty that arises from the first observations

and the linearization. Once the filter has converged around

the truth location, the EKF is able to track the position

with less computational cost. The number of steps needed



to switch to the EKF depends on the relative motion of

the robots. Those trajectories that induce changes on the

relative bearing are best suited for the localization task

while those without changes provide less information.

C. Real data

We also tested our method with real data obtained

using the setup presented above. In the experiments the

vehicles were driven manually during approximately 400
seconds. Figure 4(d) shows the trajectories described by

the platforms in one of these experiments.

The algorithm computes relative locations between the

moving platforms. To plot the results we used the ground

truth trajectory of the Labmate and the relative location

estimation at each point in time to compute the trajectory of

the Scout. Then we compare this trajectory with the Scout

ground truth trajectory. Thus the Labmate is the observer

and the Scout is the target. Figures 5(a) and (b) show

the results of the PF and the PF-EKF implementations.

At the beginning both algorithms are identical. After 137
iterations the particles have already converged around the

true location and the PF-EKF starts tracking it with the

EKF. Both trajectories are quite similar. Table II shows the

mean and the standard deviation of the distance between

the estimated position and the ground truth. Due to the

precision of the ground truth data we are not able to

compare the accuracy between the PF and the PF-EKF

algorithms as the differences are not statistically significant.

µx σx µy σy

PF 0.08m 0.06m 0.12m 0.09m

PF-EKF 0.11m 0.07m 0.15m 0.10m

TABLE II

MEAN AND STD OF THE ERRORS USING REAL DATA

Figure 5(c) shows the position error at each step of

the algorithm computed from the mean of the particles

after the resampling step. The accuracy of the algorithm

depends on the relative location of the robots and on their

relative movement. During the first stages the error of both

algorithms increases because the robots started moving in

almost parallel trajectories. Particles were spread due to

the noise in the odometry measurements. The measurement

model is more precise for close locations. Those particles

placed far away survived until the accumulated error in

position is big enough to be removed in the resampling

step. As a result the mean of the particle filter was shifted

away (see the trajectories of Figure 5(a) and (b)). This

situation lasted until the Scout platform turned right and

the filter started to converge to the right relative location.

Once the method has converged the maximum error

for both methods is around 0.4 meters. The error peaks

correspond to those parts of the trajectory where the robots

are further (up to five meters). The further the robot is,

the less informative is the observation in terms of possible

x − y positions. This makes that the estimation error and

the uncertainty of the relative location increase when the

platforms moved away one from the other.

VII. CONCLUSIONS

We have presented a method to relatively localize a pair

of robots fusing bearing measurements and the motion of

the vehicles. Bearings are obtained as direct readouts of the

omnidirectional camera. This is convenient as compared

to measuring depth, which would require knowledge or

reconstruction of the world / robot structure.

We have proposed three different implementations of the

recursive Bayes filter based on an Extended Kalman filter,

a particle filter and a combination of both techniques. The

latter combines the benefits of each type of filter resulting

in a robust and fast algorithm. We have shown several

experimental results validating the solution to the problem

and evaluating the different implementations.

As future work we are currently extending the algorithm

to the case where both robots have detection capabilities.

We also plan to study the generation of motions for the

robots that improve the accuracy of the relative localization

using the estimation available at each step.
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