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Abstract—In this paper we propose a methodology for mini-
mizing the variance of a cube (mosaicked) representation of a
scene imaged by a pan-tilt camera. The minimization is based on
the estimation of the vignetting image distortion, using the pan
and tilt degrees of freedom instead of color calibrating patterns.
Experiments with real images show that variance minimization
is effective for improving event detection.

I. I NTRODUCTION

Surveillance with pan-tilt cameras imply finding (static)
background representations. There are various ways to repre-
sent geometrically the background [1], [3]. In this paper weuse
the cube based representation as it allows a complete360o ×
360o field-of-view with simple homography transformations.
Defined the representation, background differencing can than
be used to find intrusions (events), provided one has a good
characterization of the uncertainty of the model. There are
two main sources of uncertainty: inaccurate knowledge of the
geometry of the camera and nonlinear-transformation of the
radiometric readings. The geometric uncertainty found in the
intrinsic parameters of the camera is handled by calibration.
Radiometric uncertainty is mainly due to the nonlinearity
of the radiometric response function and to vignetting, a
decreasing gain for increasing radial distances in an image[2],
[4]. A pixel based radiometric calibration is therefore required.
In the following, we tackle both the uncertainty sources. First
we introduce background modeling and construction.

II. CAMERA MODEL AND SCENE REPRESENTATION

A pan-tilt camera is characterized geometrically by a per-
spective (pin-hole) camera surveying the scene with varying
orientation while having a static projection center. The pro-
jection model is therefore represented bym ∼ PM , where
M = [x y z 1]T andm = [u v 1]T are 3D world and 2D image
points,∼ denotes equality up to a scale factor, andP = K[R t]
is a 3x4 matrix projection matrix, composed by the intrinsic
parameters matrix,K, and the extrinsic parameters,R and
t, representing the orientation and position of the camera
with respect to the world coordinate system. We assume that
the projection center is at the origin,t = 03 = [0 0 0]T .
The rotation matrix depends on the pan and tilt angles,
R = f(pan, tilt).

Building a cube base representation is a two steps process:
(i) obtaining a back-projection for each image point and (ii)
projecting the back-projection to the right face of the cube.

Fig. 1. Cube construction. Some of images used (left). Cube model and
detail of a mosaicked image (right).

If the intrinsics and the orientation of the camera are known,
then each image point can be back-projected to a 3D world
point [x y z]T = (KR)−1m. This world point can be scaled
to touch the lateral surfaces of a cube having edge lengths2L
with [xc yc zc]

T = [x y z]T ∗ L/max(|x|, |z|), from which
one defines the so termedcritical latitude, ϕc(θ) a latitude
angle dependent on longitude, denoting the transition between
the lateral faces of the cube and the top or bottom faces:

ϕc(θ) = atan(L/
√

x2
c + z2

c ) = atan
(

max(|x|, |z|)/
√

x2 + z2
)

.

Defined thecritical latitude, and converting world coordi-
nates to spherical coordinates longitude,θ = atan (x/z) and
latitude,ϕ = atan

(

−y/
√

x2 + z2
)

one can match the image
points with the correct faces of the cube using the set of rules
listed in table I.

Condition Cube face
ϕ ≥ ϕc(θ) Top

ϕ ≤ −ϕc(θ) Bottom
|ϕ| < ϕc(θ) ∧ |θ| ≤ 45o Front
|ϕ| < ϕc(θ) ∧ |θ| ≥ 135o Rear

|ϕ| < ϕc(θ) ∧ 45o < θ < 135o Right
|ϕ| < ϕc(θ) ∧ −135o < θ < −45o Left

TABLE I
MATCHING 3D DIRECTIONS(ϕ, θ) WITH CUBE FACES.

Identified the cube faces for mapping the image points,
the mapping process consists simply in projecting the back-
projections of the image points using the projection matrix
PWF = KF [RWF 03], where KF is an intrinsics matrix
characterizing the resolution (size) of the cube faces, andRWF

are rotation matrices defining optical axis orthogonal to the
cube faces. Figure 1 shows a representation of a laboratory
given images acquired by a pan-tilt camera, sweeping180o

longitude and30o latitude, in10o steps.
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Fig. 2. Event detection experiment. Vignetting corrected images are in the bottom row, columns a and c. Notice the digits superimposed by a video-projector
on the ceiling (column c). Vignetting correction allowed to increase the number of detections without raising the false alarms (column d, bottom row).

In order to map an image into the background (cube),
one has to know precisely the camera orientation,R and the
intrinsic parameters,K. In this work we assume thatR is
given by the camera control system and we obtain a first
estimate ofK using Bouguet’s calibration toolbox. Then, we
optimizeK, a function ofϑ = [uo vo fu fv]T , i.e. the principal
point and the focal lengths, by minimizing the back-projections
of corresponding image points in two images,m1i and m2i

obtained by matching SIFT features:

ϑ∗ = argϑmin
∑

i

‖R−1
1 h(K(ϑ)

−1m1i)−R−1
2 h(K(ϑ)

−1m2i)‖2

whereR1 e R2 denote the (known) rotation matrices repre-
senting the poses of the camera for acquiring the images and
h(.) denotes normalization to unit norm.

III. U NCERTAINTY AND EVENT DETECTION

In order to decrease the variance of a background represen-
tation, we estimate from (and apply to) all images defining the
background, a vignetting correction function. The estimation
process starts by choosing one image point, computing its
back-projection to a 3D point, and then moving the camera
and re-projecting the 3D point. Vignetting implies that there-
projected point-images will, in general, be different. Collecting
all re-projections in an imageVuv, one can fit a correction
function g(∆u,∆v; a) = cosh(a1∆u)cosh(a2∆v) + a3 :

a∗ = argamin
∑

uv

‖max(Vuv)/Vuv − g(∆u,∆v; a)‖2

wherea = [a1 a2 a3]
T , ∆u = u−u0 and∆v = v−v0. Given

g, we can now correct all acquired imagesI0uv as Iuv =
g(u − u0, v − v0; a) · I0uv.

Event detection is done by comparing the currently captured
image, vignetting-corrected,Iuv with the corresponding image
retrieved from the background database,Buv, using the log
likelihood function,Luv:

Luv = −0.5(Iuv − Buv)2/Σ2
uv − 0.5 ln(Σ2

uv) − 0.5 ln(2π)

whereΣ2
uv denotes the background variance. A pixel(u, v) is

considered active, foreground, ifLuv is larger than a threshold
in at least two of the three (RGB) components ofIuv.

IV. EXPERIMENTS

In our experiments we used a Sony EVI D30 to scan a room
and create two background representations: one lacking and
the other one having vignetting-correction (see Fig. 2). The
images with events to be detected, were created afterwards
using a video projector superimposing text (digits) towards
the ceiling of the room. Figure 2 shows correct detections of
digits, in both cases, despite the variance of the background
motivated by the imaging distortions (e.g. radiometric response
function and vignetting). In addition, the results show that
vignetting correction implies a lower variance in the back-
ground representation (Fig. 2, column b). The average pixel-
wise standard deviation gain is about−9.5dB. This reduction
of the variance (standard deviation) improves the detection
when using a fixed, proportional to variance, threshold for the
background subtraction algorithm.

V. FINAL NOTES AND FUTURE WORK

In this paper we proposed a vignetting correction method for
pan-tilt cameras. Experiments have shown that the correction
allows building (mosaicked) scene representations with less
variance and therefore more effective for event detection.
Future work will focus on maintaining minimized variance
representations accompanying the daylight change.
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