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Abstract— The maintenance of a stable and coherent rep-
resentation of the surrounding environment is an essential
capability in cognitive robotic systems. Most systems employ
some form of 3D perception to create internal representa-
tions of space (maps) to support tasks such as navigation,
manipulation and interaction. The creation and update of such
representations may represent a significant effort in the overall
computation performed by the robot. In this paper we propose
an architecture based on the concept oExpected Perception
that allows lightweight map updates whenever the course of
action happens according to the robot’s expectations. It is only
when the robot’s predictions and the real world outcomes differ,
that corrections must be done at its full extent. We performed
experiments and show results in a real robotic platform with
stereo (3D) perception where map corrections are proposed by
simple image level (2D) comparisons.
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In humans, perception is not just the interpretation of
sensory signals, but a prediction of consequences of action
Perception can be defined as a simulated action [1]: perceg .
tual activity is not confined to the interpretation of seysor | = e &
information but it anticipates the consequences of acson,
it is an internal simulation of action. Each time it is engége [~
in an action, the brain constructs hypotheses about the stat
of a variegated group of sensory parameters throughout
the movement. There are some experimental neuroscientific . _
evidences supporting the presence of sensory antici[sajtiodﬂe%éit'ionoi‘rfg‘l’éem"‘ér?{etg‘%ﬁrgﬂzzf?crggt?;’g;'%%éé?r unexpectgption
in humans [1][2]. Such sensory anticipations are frameal int
more general schemes for perceptions and, ultimately, for
sensorimotor coordination [2][3] and learning. Anticiipat

capabilities in humans are probably located in the cereivell
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predicted sensory input, i.e. an Expected Perception (EP),

1 Th dicti ¢ £ action in th generated thanks to internal models built by experience [5]
[4]. The predic lons of consequences ot action In the S§NSOk . ¢, imotor coordination schemes based on internal model
space are very important for the control of movement, o

- L  Oter a possibility for overcoming a significant difficulty
more_specmcally for the so-called predlt_:tlve control, '.m" related to feedback-based models. Various possibilitiest e
explain most of our sensory-motor behaviours: our brairsdo

ot base motor control on the sensorv feedback. which o combine information provided by the internal model and
100 Slow for most evervday sensor mgtor tasks E)ut on t Kctual feedback. One of the first robotic implementation of
yday y ’ hseensory motor coordination model based on internal model is
This work has been partially supported by the European Cornoniss called Expected-Perception (EP) ?’Cheme d|SC_ussed '_n]'[6][7
with the RoboSoM Project, FP7-ICT-248366, and by the Italdinistry  The papers propose an anticipation mechanism to improve
of Education and Research, in the PRIN programme. The authomtdw the perception-action loop of robots interacting with real
like to thank Italian Ministry of Foreign Affairs, Generalif@ctorate for d . In thi del th . iall
Cultural Promotion and Cooperation, for its support to thakdshment of Wor envwonme_nts. n this model the perc.eptlor! Cruc'_a y_
the RoboCasa joint laboratory. involves comparison processes between incoming stimuli
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and EPs, built from previous perceptions, current motor .
commands, and internal models of the robot and the environ- e [ Hfi"l‘liliii"""’ '
ment. Background knowledge plays here a helpful role, as it
reduces the computational burden of perception and motol
coordination tasks in partially structured environmems.
application of internal model to the prediction of tactile
feedback in grasping is presented in [8]. In [8], the sensory’
prediction is part of a grasping action, controlled by a sthe
based on Expected Perception (EP) [6]. Internal models in
an EP scheme can be built through experience of the rea
world by means of neural-network-based learning mecha-
nisms. Gross et al. [9] provided a neural control architectu
implemented on a mobile miniature robot performing a local
navigation task, where the robot anticipates the sensory-
motor consequences of all possible motor actions in order
to navigate successfully in critical environmental region
such as in front of obstacles or intersections. Barrera and

Laschi [10] provide a high-level architecture of Sensc’ryfogether with visual information in a time filtering scheme

motqr coordination basgd on anticipatory visual perceptpto provide lower variance estimates of robot and landmark
and internal models built using a fuzzy neural network. Thi

focations. Following the Simultaneous Localization andoMa
architecture for the Anticipatory Visual Perception (AVP) 9 M

is depicted by fi 2 in t f functional dul Building approach (SLAM) [13], the state of the robot
Sn d ?‘Ipol\(/:veof iri‘orlr?wiiieon b'gtwgremnsthzmur’l\cc::%r;gmgnct’outﬁZ(IocaIization) and of 3D points in the environment (map)
AVP architecture, the locomotion of the robot relies on th are updated through a combination of prior knowledge (the

binati f o i . les- the traditib %revious state) and the current sensory readings. In [14]
C?\S]ﬂl]napl\grll)% wc()j pircep lon-action cycles. the tra monocular visual SLAM and the information of the robot
a © -based one. Iplanned movements are used to maintain a sparse map of
In this paper we exploit the concept of Expected Per;

tion t hitect o add h bl the environment and localize the robot. More recently [15]
ception o propose an architeciure to address the probi€ilyy qiereq vision and a grid based representation of the

gf r?g\’\:]dt% uggatr%ni]gorgo_trz égtzrazltéesrgfaetgt?r'%n lc:nt.hSnvironment. In this paper we propose a step further in
urrounding envi ’ P P M&e utilization of motor information for 3D reconstruction

dynam_|c environment, an autor!c_)mous rOb.Ot mu;t uDdate’é"‘)}stems. Beyond filtering and data association, motor in-
each time step, the relative position of the items in the Worlformation can be used to create predictions in the sensor

with respect to itself, hence requiring efficient perceptio .- .o that can be very efficiently checked in run-time. If

strategies. We consider the case of humanoid robots Wi Xpectations are confirmed, no updates to the predictians ar

stereo.V|S|on_ having to nawgate and avoid obstacles I|I1]eeded, thus allowing significant computational savings in
dynamic environments and discuss the role of the robot verage
motor information in the construction of a coherent an :

. ; The structure of the paper is as follows. Section Il de-
stable 3D representation of the world. In particular we__ . . . .
) . : . ; : Scribes the visual expected perception scheme providing a
are interested in using this knowledge for increasing th

efficiency of robot perception with respect to the utilizati Getailed overview of the implemented architecture. Sectio

: . . [l introduces the internal models for mapping the sensory

of visual information alone. . . .
L o . odometry information to head pose and changes in the
Robot navigation, localization and 3D scene reconstractio . : : : X
. visual field. Section IV describes the Expected Perception
are among the oldest and most researched areas in robagtic :
) o . Geénerator and Visual Comparator modules as well as how

science. However, the exploitation of Expected Perception.” . :

. ) this information can be used to update a 3D scene represen-
ideas in these areas are not common. We argue that |

complex svstems. such as humanoid robots. Expected Pteant_ion in a computationally efficient manner. Finally, riésu
b Y ' » =XP Sbtained with a real iCub robot head (see figure 1) are shown

ception based techniques will play a key role in the effi- . : . .
) . n section V and conclusions are drawn in section VI.
ciency of the algorithms. The most common approaches {0

robot navigation rely solely on (visual) perception. Fangs
on application to humanoid robots, [11] uses plane fitting
methods in the depth maps acquired by the stereo setup alfThe EP scheme architecture modelled and implemented
each time, to support the detection of the ground floor anid this work is shown in Figure 3. The scheme was thought
obstacles required for navigation. In [12] visual odometryo face a recent task for the EP applications. Differently
and 3D reconstruction are used to plan the footsteps &bm the most of previous works (like [6][7] for grasping),

a humanoid robot. Another class of methods use motodhe Expected Perception is used to support a 3D vison
information, to improve the quality of the of the navigationsystem of a humanoid robot. More precisely, the prediction
and reconstruction systems. Often, motor odometry is used camera images allows to simply update the 3D map of

INTERNAL MODELS AVP \» VISUAL

VISUAL PROCESSING

Fig. 2. The AVP scheme[10].

Il. VISUAL EP SCHEME



THE VISUAL EP SCHEME
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Fig. 3. Visual EP Scheme.

the environment, without calculate it again in every visiorblocks:

step.

Unlike the classical control loops, that base their respons
only on the past/current sensory data, the EP architectures
use the sensory anticipation to control the actuators. Oh [1
the authors start to investigate this task for the controh of
humanoid robot locomotion. This scheme is divided in two
main loops:

« classical perception-action loop
« prediction loop

The AVP architecture represents the starting point for the
design of the scheme implemented in this paper. Although
the two schemes apparently solve the same problem, they»
are actually different. First of all, the scheme proposed by
A. Barrera and C. Laschi describes an entire control loop
based on visual anticipation, whereas the architecture of
this paper focus mainly on the prediction loop. Both of
the schemes generate the Expected Prediction from a visuak
3D reconstruction of the environment. The AVP architecture
produces a tridimensional Expected Perception, whereas th
proposed scheme generates a 2D prediction, easier and faste
to process and analyze.

In the scheme depicted in Figure 3, a loop step consistse®
in the 3D reconstruction of the environment captured by the
stereo cameras. During each step the cameras response will
be anticipated, generating a predicted left camera image. A
internal model of the robot kinematics permits to obtain the
prediction. The 3D reconstruction is, then, simply updated
using the comparison between the predicted image and the
actual one. The zone of the 3D reconstruction to be updated

The Internal Model block calculates the new end ef-
fector position (rotation matrix and translation vector
of the left camera) from the encoder angles and motor
commands. The block is realized using a multilayer
feedforward neural network, trained with the back-
propagation algorithm. Additionally, internal model is
updated only if the change registered within the envi-
ronment is permanent. In this case, the structure and
learning parameters of the neural network are adjusted
to consider a new association between robot body
movements and changes in the visual field.

The EP Generator block calculates the predicted left
camera image from the 3D reconstruction (gener-
ated/updated by the@D Reconstruction of Visible Space)

and the left camera position (given by theternal
Modd!).

The Visual Comparator block calculates the differences
between the predicted and actual images. Furthermore
this block evaluate if the errors are permanent and a
new training phase of the internal model network is
necessary.

The 3D Reconstruction of Visible Space block updates
the most unpredictable zone of the 3D reconstruction.
Only at the beginning of the control loop the architec-
ture has to build the entire 3D reconstruction of the
visible environment.

Il. I NTERNAL MODEL

for the next step are calculated applying a threshold on the The role of the internal model, inside the Visual EP

difference image.

Scheme, is to learn the correlation between robot body

The EP scheme operation is modelled by a series ofiovements and changes in the visual field. We tested the



The objective of this section is to incrementally obtain a

Test Evror disparity mapD* at each time instant, using the expected

Training Error perception concepts to avoid recomputing the whole map
every time. This can be broken into two sub-tasks: 1)

discovering which areas require an update; 2) recomputing
the disparity map on the invalidated regions and fusing this
information with the previously available information. ¢ka

= of these will be described in greater detail next.

Validation Error

Mean Error

2000 Epguéhs 3000

Fig. 4. The graph shows the learning phase of the neural metWwde A. Detecting Invalid Regions
t“ggfg;gfg;;?ooo epochs is plotted for training set, valafaset and | the Expected Perception framework, intensive sensor
processing should be delayed until a simpler detection al-
gorithm flags this data as no longer valid. Since obtaining
internal model moving the iCub’s head (neck pan, necBD measurements from stereo image data is considered
swing and neck tilt). To compute visual shifts due to théx computational burden, it is a prime candidate for this
head movements the internal model learns the position aagproach. Here the question of how to detect when the
orientation of the end effector (the left camera) related tprevious data is no longer valid is addressed.
the head position. So, being the camera position known, it Since the detection process should be as computationally
is possible to generate a predicted synthetic image for thieexpensive as possible this detection is done by comparing
comparison with the real one. The internal model has bedxightness information at consecutive time instant&sand
implemented using a feedforward artificial neural network[.**!. Note that since the cameras are moving, a direct
a Multilayer Perceptron. This network has been developéarightness comparison is impossible (see figure 1.(e)) and
with 3 neurons in the input layer (related to neck swinga prediction step is needed to propagate the previous image
tilt and pan angles), 10 neurons in the hidden layer and 18 time instantk + 1 before the comparison. This task is
neurons in output layer that correspond with the values afimplified by the availability of the camera position estiesg
the transformation matrixT' calculated using odometry to T* and an estimate of the 3D world represented as a disparity
estimate the position and the orientation of the left camerémage D!, but since these readings are not perfect (sensor

given a certain rotatiorkR and translatiort. discretization, kinematic errors, etc.), a means of atiéing
R predictable false positives is needed. Refer to figure 5rior a
T = { 0o 1 } overview.

When new odometry information is available at tifme 1

The network uses the non linear activation sigmoid funche system is able to compute a prediction for the left image
tion with backpropagation learning rule. It has been taken 1 b kel Tk
into account 300 simulation results, the training set fa th LT = p(L% T, DET)
neural network is the 70% of these values, the 15% is us
for the validation set and another 15% is used for the test s
These values have been shuffled to increase the variabil

i?: Ehirgazllm‘rll?]ester;irme ;errsgrltiss (glr;r:)estliirllril;ir:e% er?ef?g\\//vv e new camera pose. In perfect conditions, where the real
9 ) g tr&nsformation is well known and there is no noise, the

?oprcﬁ?ss't;—:f\';ed:;to (tar(]jetﬁg]tpr);einli(rl\nevn\jr?(telgstrfgi:]r:rs:y?rt]% edicted image matches perfectly with the acquired image
) bp 9 LF+1), except for non-predictable image points either not

I . 106
validation set is less thed- 1077, visible in the previous image or belonging to a moving
V. ESTIMATING 3D object. In these conditions a brightness difference

%S/ mapping each pixel on the image at tirheo a certain
osition on the image space at time instant- 1 by re-
ojecting the previous brightness and 3D information on

The general setup assumed in this paper consists of a JoLan - ‘Llfrl ka“\
stereo camera mounted at the end of a kinematic chain,
described as a set df joint anglesf = (61,602,--- ,0;) € between these two images should result in a well defined
R!. Assume that the odometry is calibrated in the sense thasagmentation of the areas in need of being updated.
mapT : RY — SE(3) is available, wher&SE(3) denotes the  In real conditions however, the odometry and disparity
set of rigid transformations, which converts the odometrinformation are not perfect and small misalignments areeto b
values into camera position and orientation as described @xpected. Unfortunately these result in high intensitypmesr
the previous section. At each time instarica pair of images particularly noticeable near the intensity edges and aeerne
L* and R*, henceforth refered to as left and right image®f the observed image, and require some mechanism to
respectively, are obtained from cameras mounted on the ladiminate their influence. Fortunately these edges andecsrn
segment of the kinematic chain together with a &etof occur at predictable positions allowing for a mechanism
odometer readings which provide an estimate of the camendich attenuates their influence to be implementable. T thi
position asT* = T'(6%). end, these error images are used to generate an accumulated



error which is propagated and accumulated along time using ’ c

a certain forgetting factok as
CHH = (EFT £ XCH ) /(A + 1)

Odometry

Disparity Map PREDICTION PREDICTION EP GENERATOR

where I C &
k+1 k k+1 k+1
CEHl = p(CF; T+, DY

is the information propagated along time. In the described LK
setup a forgetting factor oh = 10 provides good results.

The effect of this low pass filtering is that it detects and
propagates image areas known to be noisily unpredictable J

and this information can be used to attenuate each pixel in ATTENUATION [¢1 15| LOWPASS
the error image before deciding whether a region needs to
be updated or not. Thus, an attenuated error is generated as

AR+ — phtl oy (_a (Ck+1)2) |>threshald|
B p N 7 CK*I

where a value ofa = 0.1 provides good results. This .
. . - .Fig. 5. Implementation of the EP Generator and Visual Comparato
attenuation results in a good compromise between detecngﬁdule&

of unexpected changes and ignoring repeatably unexpected
image areas. The segmentation of the unexpected event
is then done in the image space, detecting what is nbkead moves randomly and an independently moving object
predictable by the system, by applying a threshold (in thihand) appears in the fields of view of the cameras (see
case the hand moving independently). figure 6(a), (b), (c) and (d)). The movement of the hand
B. The Disparity Map :ts also random and thus there is no information describing
_The_ previous.description mgkes use of a precomputed Given an input image acquired at the tirethe angles
disparity map (inverse depth information) to be able tQy the joints observed at time + 1 and a dense disparities
predict both the image at the next time instaift™! and map representing the imaged world at tinke one can
the cumulative erroC**!. This map needs to be updatedpredict the input image at + 1 (figure 6(f)). This image
and is the proposed output of the algorithm here presented. expected to have compensated most of the self-motion,
Using a stereo pair of images at the initial time instaift, however one finds that due to some illumination variance
and R, we obtain an initial disparity map® that is used and to some imprecision on the encoders, there are some
to bootstrap the algorithm. This information is used as longifferences between the predicted and the real imageslymost
as it is valid and generates predicted images consisteht Wigear the image edges (flickering lights are examples of image
the ones acquired. At each time instant the disparity map {§tferences not motivated by motion).
updated from the odometry information through a function Figure 6(g) shows the brightness difference between the
pp as 1 PR real and predicted images. This error image shows not only
D= = pp(D*T) the hand but all the small misalignments near the edges.
which performs a rigid transformation of the 3D pointsHowever, the accumulated error image (figure 6(h)) takes
represented as the disparity may. This prediction is then these misalignments into account since they are predetabl
used to apply the expected perception concept as descriggdistantly appearing in the same places, allowing their
previously to detect which areas require full disparity redttenuation along time (figure 6(i)). Figure 6(k) compares
computation. Only these areas are updated reducing tH mean errors before and after the attenuation process
computation time. (figure 6(g) and (i)), where it is _notlceable the de_crease
For the disparity map information used in this paper w@f the mean error value after this process, meaning that
used the Semi-Global Block Matching algorithm available ifnostly of the image error is now due to the presence of

VISUAL
COMPARATOR

OpenCV, based on [16]. unpredictable events. Now the hand appears clearly salient
This clear saliency allows to find independent motion by
V. RESULTS simple thresholding, as shown in figure 6(j).

In order to test the proposed perception methodology Figure 6(l) shows the updated disparity map. This map is
in a real setup, an experiment was conducted with theonstructed in an iterative manner, being guided by unex-
iCub robotic head (figure 1(a)). The robotic head allowpected perception detected on the image (differences). The
the synchronous acquisition of stereo images and odometarger disparities correspond to the hand, which in fact is
information, namely the angles associated to each joir (seloser to the iCub’s cameras than the rest of the background.
figure 1(b)). The intrinsic and extrinsic parameters of th&he qualitatively correct information on the disparitiegm
cameras have been previously calibrated using a Matlatstiows that it can be constructed iteratively using just some
calibration toolbox [17]. During the experiment, the rdbot specific information at each time sample.



(e) Real Image

(i) Attenuated Error Image

(i) Unexpected Perceptio

(h) Accumulated Error
Image

(9) Error Image

Image mean erfor
P v w2 oo o

n (k) Mean errors with and

10 20 30_ 40 S

0 60 70 80
Frame number

(I) Updated disparities

w/o attenuation map

Fig. 6. Updating the expected disparities map given steregesiand the joints motion. Input stereo-sequence of imagesef30, 50, 70, 90 (a,b,c,d).
Real Image at timé + 1 (e). Predicted Image at time+ 1 (). Error image (brightness difference between (e) anddf)limek + 1 (g). Accumulated
error images up to timé& (h). Attenuated error image at tinie+ 1 (i). Unexpected perception at tinie+ 1 (j). Means of (g) and (i) along time, resp.
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VI. CONCLUSION

Conference on Intelligent Robots and Systems, October 2003, pp.
934-939.

In this paper we have applied the Expected Perceptiofir] —, “Expected Perception in robots: a biologically drivperception-
concept to the problem of maintaining a valid 3D recon-
struction of visible space. The current 3D knowledge of theyg,
system is used to create predictions of the future peragptio
at the sensor level. This allows a very quick assessment of
the validity of the prediction through direct sensor based[9]
correlations. We have shown in a real robotic head, that
predictions of image data can support direct comparison wi
freshly acquired images to detect regions where the WOI’E’]O]
has changed. Even with a significant amount of ego-motiofL1]
camera noise and encoder uncertainty, Expected Percgption
mechanisms can be implemented at a low-level, very close
to the direct camera readings. This is a key finding for
the development of truly efficient and automated cognitivé-?]
systems.
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