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Abstract— Humanoid robots are complex sensorimotor sys- > | IMU
tems where the existence of internal models are of utmost w
importance both for control purposes and for predicting the
changes in the world arising from the system’s own actions. I - —~ 5
This so-called expected perception relies on the existence of { ’.) )

accurate internal models of the robot’s sensorimotor chains.
We assume that the kinematic model is known in advance

but that the absolute offsets of the different axes cannot be [

directly retrieved from encoders. We propose a method to l

estimate such parameters, the zero position of the joints of
a humanoid robotic head, by relying on proprioceptive sensors 2 .
such as relative encoders and inertial sensing as well as visual (a) iCub head (b) Actuators and Sensors
input.

We show that our method can estimate the correct offsets of
the different joints (i.e. absolute positioning) in a continuous,
online manner. Not only the method is robust to noise but
it can as well cope with and adjust to abrupt changes in the
parameters. Experiments with three different robotic heads are
presented and illustrate the performance of the methodology
as well as the advantages of using such an approach.

y encoders {
it} ___4

I. INTRODUCTION

The application of robotic technologies in fields such
as military, industry, service or research has grown quite e
significantly over the past years. As a consequence, the need (c) Sample cameras motion (e) 0.5° offsets
for these robots to perform a large number of specific tasks ) o )
has led to an impressive increase in their level of complexi Fig. 1. The iCub head used in this work (a). Sensors and artut the

as R P - ticub head encompass two cameras, six motors and encoders, amidon
and sophisticated control and perceptual modalities. Re). Example of a trajectory of the stereo cameras (red arraws) observe
gardless of the concrete application domain, the avail;abil an object in the scene (c;yan square), to demonstrate the effdwe offsets

f internal, properly calibrated, sensorimotor models ris a'. the expected perception (c). Images of the cyan squaretseene left
0 S » properly 1o camera and expected perception (dashed lines) when allitite Jtave2°
ubiquitous and fundamental requirement. offsets (d). Expected images of the cyan square when thesjbiate just

Such internal models are instrumental for the control of-5° offsets (e).
such complex robots, as they allow to predict the conse-
guences of the robot’s own movements in a certain physical
scenario. Perception can thus contrast predicted sigriis weven if manually performed by experts. An alternative way,
actually observed measurements. This mechanisnexof that we adopt in this work, is to exploit the robot’'s own
pected perception is believed to be used routinely by humanssmbedded sensors and design automated calibration methods
when addressing a variety of tasks including locomotionyhich are faster and more accurate than manual tuning, able
grasping, manipulation, etc [1], [2], [3] to adjust to dynamic changes over time.

It is however important to note that the increased com- while the discussion is valid for many different systems,
plexity of such robot systems, in particular the large numben this paper we focus on the specific case of humanoid
of degrees of freedom and sophisticated sensing, makes fi®ot heads. The heads are usually equipped with inertial
calibration process quite challenging. Indeed, the caflibn  sensors (IMU) and motor encoders that provide information
can be prohibitively time consuming and subject to errorgoncerning the rotation of the joints. This type of sensars ¢

. 4 . describe the movements of the robot, which is useful for cali
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PTDC / EEACRO / 105413 / 2008. encoders provide relative measurements only, the absolute
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{5}

zero position of the head is normally assigned to the initial 4}

position when the system is turned on. The angular offsets X‘T’z
of the joints need to be estimated in order to determine the "ATAZ Y
system’s real configuration at startup and ensure repdtabi Y X z 3

of operation.

The importance of having accurate internal models of the XAT‘Z
robot's sensorimotor chains has been stressed in a recent {2} vz
review [4]. Several works have addressed the problem of{l}(
calibrating sensorimotor chains, by combining informatio .e. XAT‘Z{l}
provided by embedded or external sensors, like the IMU M

X Z
O||:e<»'6|i Y {0}

Y

or cameras, with readings from encoders, to estimate the{0}
absolute offsets required for calibration. In [5] the autho
present an algorithm that enables a humanoid robot to learn
its kinematic function by visually observing its end-eff@s g > icub head main frames. The IMU (box on the top) is rigatiached
when moving them. However this algorithm assumes ata frame{3}. Joint anglesg; are obtained from the encoder readings,
artificial form of measuring the information of the jointsafter subtracting the offsets, i.e. zero position encodadingsd;.

using specific known objects attached to the end-effectdr th

needs to be always in the field of view of the cameras. A h d th lati f h
similar approach is presented in [6] where specific visudata the cameras and the relative measurements from the

markers are used to learn the kinematic function of the robo‘??]f:OderS’ In (tjhe presence of noise ar;d othe_:fr dlstuLbances.
This algorithm finds the optimal set of robot configurationg NS Systém does not use any type of specific markers or

and observations that improve the learning process thf§oW" objects in the world or attached to the robot body.
minimizing the required amount of data. Other works do The structure of the paper is as follows. Section Il does an

not need specific markers or known objects to calibrate tHatroduction to the calibration problem. Section 1l debes
robotic kinematic model, using restrictions in the signal he methodology We propose for the callbrgtlon of a robotic
sensors produced by the movements of the robot jointQ?ad' Results obtained with different robotic head platfor

The work described in [7] proposes a mathematical solutiod® shown in section IV and conclusions are drawn in section
and implements a vision based method for the automati
calibration of a small pan-tilt system. This method is able
to find the joints initial angles by tracking visual featuias _ ) _ _
the images provided by a camera mounted at the end of thelt 18 common for humanoid robots to be equipped with
kinematic chain and by calculating the homography induceg’coder sensors which lack the capability of providing
by rotations of the tilt joint. However, the authors poiman.absolute encoder position with .respe.ct to some factory
out that the estimation of the offsets of the joints dependidlibrated value. These encoders fix their zero value at the
largely on the quality of the tracker, since this system dod0Sition in which they are turned on, consequently needing
not include filtering to attenuate the bad influence of suclf P€ calibrated each time the system is powered on.
measurements. A different calibration method is preseinted e define the head absolute zero position as having the
[8], to automatically calibrate the neck joints of a humahoi €@meras looking forward, with parallel projection planes
robot using measurements from the IMU. The approach us@&hogonal to the floor, and a chosen gravity vector reading
the algorithm described in [9] to obtain - in real time - thediven by the IMU, usually corresponding to a perfectly
values of the joints that allow the correct calibration of th Vertical gravity vector pointing down. These sensors are
head. However, like the previous work, this system does n§Pmmonly placed on top of the head thus not influenced
include any type of noise filtering or disturbance rejection Py €ye movement. For these sensor readings, we define the

Ultimately, a good calibration result is always hard to?€r0 position of the reference frames as having the axis
obtain since it depends on the quality of the sensors, on tiRéiéntationsz pointing to the right,y pointing down and
presence of noise or non-linearities such as joint backlash POINting to the front (see figure 2).
where the encoders can no longer provide information about 1€ complete rotationfz, of a certain reference frame
the actual rotation. As most robots are equipped with redati rélative to the base of the kinematic chdircan be repre-
encoders, calibration of the absolute positions has to [&nted as a composition of elementary rotations around each
done at startup time as well as during operation. A robud@int. Considering that the joints are numbered sequeytial
method is then required to provide the best results under aff}¢ kinematic model from the base frarfe} to frame {n}
conditions. IS written as

Our contribution is thus an approach for online calibration » _n 2 1
of a real humanoid robotic head, in terms of its joints angles Bo (6o 0n) ="Bn-1 (Bn) .. "B (61) Fo (60) (1)
and taking the kinematic model into account. The methowhere the different; and ‘' R; represent the angle and
proposed operates in a continuous manner, it is robust e one axis rotation function of each individual joint. hi
noise and uses information from the embedded IMU, visudinematic model can predict the measurements of each

Il. PROBLEM FORMULATION



sensor since their spatial orientation in each time instnt for the three principal axis of the frame that the IMU is

known. In this work we assume the base of the kinematidgidly attached to. We assume that the linear acceleration

chain is static and aligned with gravity in a planar horiabnt measured by the IMU correspond to the effects of the gravity

surface, the world is static and infinite (all the objectsnseevector decomposed in the three components:,0ff and z

by the cameras are at a very large distance) and there areaffected by sensor noise.

mounting errors of the sensors. The cameras providd/ image features represented by
Due to the referred encoder resetting when powered ugheir image coordinateg; = [u; v;] which can be collected

the joint anglest; are given by the encoder readings in the feature measurement vector at an instant

subtracted by a constamt which needs to be estimated. k Tek k

The objective of this work is to estimate the offsétssuch Zp = [fo fM*J ) ™

that the relation We are interested in image movement induced by joint

movement hence we always consider a pair of consecutive
0i =i =0 @ frames as measurements (for examfgle and Z&~1). The

holds. Collecting the joint offsets; in a vectorya, the features are assumed to be matched between the two time

system statey which is to be estimated at each time stegnstants which is accomplished by applying the Harris Corne

is: Detector [11] to imagé: — 1 and then tracking the obtained

Y = [chxﬂT A3) feat_ures in image: using an _im_age patch to perform Nor-

malized Cross Correlation within a given area.

where s denotes the norm of the gravity, also to be ConsideringV kinematic joints, a scan of all the encoders,

estimated online in order to compensate offsets in the a}. consists of N measurements of the relative position of

celerometer readings. the joints taken at time instants

I1l. CALIBRATION METHODOLOGY ZE =leh ... eh_y]. (8)

The base of our system is an Implicit Kalman Filter [10],The encoders are sampled at the same instants as the other
which, given the state transition and the sensor observatitneasurements, IMU or cameras.
equations is able to update the state in order to reduce theSince the IMU seldomly works at the same frequency as
measurement error, thus providing the best estimates éor tthe image acquisition sensors, these readings are usully n
joints offsets. simultaneously available. Hence at each time step we either
. have an IMU observation or an image observation which
A. Sate Transition Model needs to be filtered. The system measurem&titare thus

In our system statg both the gravity norm as well as the given by one of two possibilities at each time step
joint offsets are assumed to be constant over time, thus the , ok ok ke ,
state transition equatioft simply propagates the previous 7k = [Zl;‘ Zy Zp Zg 1] +f ©)
values. To allow for small changes of the values over timeyr
e.g. due to mechanical wear or slippage, we allow for some Zh=[zF Zyt Zy Z57] + vl (10)
state transition noise”.

k k k k
The system state transition modglis therefore simply: Where v; ~ N (0,R}) and v¢. ~ N (0,R¢) are the

observation noise in case of IMU or image measurements
= k. (4) respectively, assumed to be a zero mean Gaussian with
covariance matrix?} or Rf.. These measurements provide

1 k ~J k k i . . . . .
Here w® ~ N (0,Q") where Q" represents the covanance physical constraints which are used by the filter to improve
matrix of the zero mean state transition noise The system the state estimates.

can be adapted to be more or less sensitive to variationgin th |, order to predict the sensor measurements the absolute
estimate of the offsets by changing this covariance matrix, 5j,e of each joint is needed to compute the complete

B. Observation Model rotations’R, from the base of the kinematic chain to the

reference frame where each sensor is mounted. Collecting

Inthis work we are considering robotic platforms equippedquations 2 in vector form, the absolute values of the joints
with three types of sensors: IMU, cameras and encoders. {§ 5 given by

order to describe the observation model, we first introduce ok — Z§ _ X’X (11)
the notation for the measurements that we take from each of
the sensors. Considering that the IMU is mounted on reference frame
The IMU provides measurements at tinkefor linear We represent the base to IMU coordinate transformation by
accelerations TRy (©). The linear accelerations measurement prediction
Z’jl _ [aﬁ a’; al;] (5) Z 4 are obtained by mapping the world constant gravity
vector by this rotation:

klk—1
v

and angular velocities
Zy = [wy wy wt] (6) Zax" ZE) =Ry (O%).[ 0 —xk 0]" (12



whereyx¥, is the prediction of the gravity norm present in the
state vectory. Note the negative sign since the accelerometer
measures gravitational reaction.

The angular velocities measurement predictichs are
computed from the derivative of the IMU reference frame,
here approximated by the change of this reference frame
between two consecutive time instants divided by the change
in time. Since the base of the robotic platform does not move
these velocities can be obtained from

I kN ITp—1 k—1 i iti
Sk ok gk g1y _ log( Ro(©%)." Ry (© )) (b) Vertical, front and back positions.

W(X 7ZE’ ZE ) = dT (13) 0 ‘ Gravl‘(yveclo‘r(x cc\m‘ponenl)‘—lMU (b‘lack das‘hed) anrf Kmema‘m:s (ren‘solwd) ‘
where thelog function is implemented as the inverse Ro- = M_/wm—— 1
drigues function providing the instant angular changad 90 N S (N S St S U S S

. . . o 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750
dT is the time interval between the two encoder measure- (ravity Vector ¥ componer - 1 (oek Sasher) and Kinematics red sold)
ments. . _ ' T skyul . 1

When a camera is available, mounted in reference frame £ | il
C, the position of a set of previously observed features can w1t b VATV AV,
be predicted assuming the world is infinite (image features Gravity Vctor (2 cormpanent - IMU (HIAGK Gasner) and Kinematics (red solic)
only affected by rotation). The prediction of thth image < o 1
featuref; is given by 5 AV ; 1

Ak C k C k—l —1 k_l T o 2%0 5(‘)0 7;0 10‘00 l:llsi(z‘or‘slS‘?()l/Fre:W‘S: 2(;00 22‘50 25‘00 27‘50
fi:P( R§.(“Rg™Y) A 1] ) (14) . Clerear |

(c) Gravity observed (IMU, black) and estimated (red).
where P is a function that divides the andy components g. 3. A visual description of the calibration process foe iCub head.

by 2. This equation provides a set of constraints, two fop éequence of positions acquired during the random movemenheof
each image feature, which can be collected as head (a). The calibrated position of the head completelyicaérand the
response of the head to a rectangular signal on the tilt mdxprAfter
~ k k k—1 k—1 7 ik
Zr(X", Zp 2y 25 ) = [f(? fz]f/fq

]T ] (15) converging the calibration, the head is successfully comedial a vertical
Thus, depending on the set of measurements available a&ag

position,G; = 0 andG, = 0, and correctly shows a leaning forward and
kwards pattern; = 0 andG, alternates max./min., corresponding to

given time step (either equation 9 or 10) the observation

function H* of the implicit Kalman filter is either

rectangular signal applied to the tilt motor (c).
gk _ Zk: k 7k
HE(F, 7%y = A= Za(X", Zg)

Z’VCV B ZﬁV(Xk’ 2, Zé ' in particular having different schema and numbers of joints
or The kinematic model of the iCub head encompasses six
ik oky _ ok _ & k ok k=1 k—1y _ rotational joints, namely tilt, swing, pan, eyes tilt, lefye
MO 25) = 2p = 2r(X 25 2 Zp ) = 0. (A7) pan and right eye pan (see Figure 2). The Kobian robot is a
By using this function as the filter's innovation, the system humanoid platform with seven rotational joints in the head,

able to correctly estimate all the joint offsets. As pregigu namely swing, tilt, pan, tilt, eyes tilt, left eye pan andhig
mentioned, an Implicit Kalman Filter is used since none oéye pan. The Vizzy robot has also six rotational joints in the
the measurement equations can be written in explicit fornnead, but in a different configuration (order) from the iCub
defining instead a constraint that the measurements, tgethead, namely tilt, pan, tilt, eyes tilt, left eye pan and tigh
with the state need to satisfy. eye pan.

)] =0 (16)

IV. RESULTS The calibration procedure common to all experiments,

This section describes the experiments realized to test tR@nsists of initializing the head in an arbitrary uncaltech
behavior and performance of the proposed online calibratid?©sition and rotating it randomly, either by hand or by motor
system. The experiments involved three humanoid head$9ntrol, as shown in figure 3 for the case of the iCub.
robots: the iCub robotic head at IST/UTL University [12], Two specific sets of experiments were realized with the
the Kobian robot at Waseda University [13] (see Figure 6(a)?

; ; . “{Cub head (i) testing the absolute positioning error as read
3?5 g?be))\ﬁzzy robot also at IST/UTL University (see I:'g'by the gravity measurements, and (ii) testing the repdétabi

The testing of multiple robots allows verifying the ada t_of the calibration results obtained. The standard dewviatio

ability of theg o osedps stem to different robot?c lath P of the observation noises were measured in order to have an
y prop Yy P ' accurate characterization of the sensors. The measunaegbval

1The inverse Rodrigues formula provides a closed form saiutinthe are shown in table | along with the frequency associated to

Lie logarithm function on the rotation Lie group. each sensor.



TABLE | TABLE I

CHARACTERIZATION OF THE SENSORS GRAVITY VECTOR COMPONENTS IN THE ZERO POSITION
Sensor Noise Std. Dev.| Frequency {z) EXp. # | gu(m/s%) | gy(m/s?) | g.(m/s?)
IMU (Linear Acceleration) 0.22 m/s? 10 1 —0.022 —9.835 —0.016
IMU (Angular Velocity) 0.10 rad/s 10 2 0.034 —9.844 —0.096
Cameras 3 pixel 30 3 —0.102 —9.829 —0.091
Encoders 0.0005 rad > 30 4 —0.051 —9.851 —0.010
Joints Offsets
] (with an accuracy 009.99%). This experiment shows that
S the system is able to converge to a solution which agrees
2l 1 with the absolute gravity readings when started in differen
ol [ head configurations.

B. Repeatability analysis of the calibration procedure

The correct behavior of the system is also validated by
ensuring its repeatability. To test the repeatability oé th
calibration procedure, we ran the algorithm with the iCub
head started in six different configurations without a full
reset of the encoders, meaning the offsets were the same
for all experiments. Figure 5 shows the convergence of the

Angle (deg)

I I I I I I I I I
100 200 300 400 500 600 700 800 900 1000

foretens (R offset estimates in each experiment with the mean value

Fig. 4. Calibration of the iCub joints offsets - joint O (regjint 1 (vellow), taken in the |aSBO_O |.terat|ons shown in table 11l along W'th
joint 2 (blue), joint 3 (green), joint 4 (purple) and joint Bl&ck). the standard deviation. The results show that the different
o ) ) o experiments converge to similar values thus empirically
A. Offset estimation with homing to the zero position proving the robustness of the proposed method to different

To test and analyze the convergence of the system and tarting conditions.
homing to the zero position we used the iCub robotic head
as previously described. Figure 4 shows the convergence
of the system to the offsets of the joints in approximately
70 iterations or2.3 seconds, starting at iterati@0, corre- Exp#Z | 00(°) | 01(°) | 82(°) | 85(°) | 84(°) | 85(°)
sponding to the moment the head was first moved. The filtef —43.8 | 31.7 | =502 | —21 | 373 | —424
was initialized with all offsets set to zero and it is worth _jg:j gig _2(2):; _i’:g gg:g _jgz
noting that immediately after the first iteration the system —431 | 320 | =520 | =39 | 374 | —49.9
has already assimilated the first reading of the acceleemet —43.4 | 32.8 | —51.1 | —2.3 | 39.8 | —42.1
(the_flrst 260 iterations in the figure). Since different he{:\d <id dev 022‘3 0372'400 1.%27'3 1_352 1?2470 1.?)206
configurations can provide the same accelerometer readings
(e.g. different pan angles with a fully upright head), this
initial measurement is not enough to converge to the fine' ot Orfeet ot 1 Orfent
configuration nor does it provide any information about the ° %

-20

eye joints. The head movements are required to disambigu€ _.

TABLE Il
REPEATABILITY - MEAN VALUES OF THE OFFSET COMPONENTS

O UL W N~

Angle (deg)

i

these multiple solutions and provide the final offsets value E’-ZO e
. . . .. -80 . .
As seen in the figure, the first three joints never fully 200 400 600 800 1000 200 400 600 800 1000
. . . . . . Iterations ( *[1/Freq] s; Iterations ( *[1/Freq] s
converge to a single value, oscillating inside an interve Som 2 Ofser Somi S offoer

50 ‘ 50

([—46°, —40°], [29°,35°] and [-55°, —48°] for each of the

deg)

first three joints respectively). These variations are due 1s °‘=‘QL % o—?[f%—-s—
the presence of backlash zones where the joints can mo= 7 . -
but the encoders provide no measurements. Since this syst 200 erations (e o 10 200 crato (e o %
fuses the information from three different sensors, it ieab ot Ofise 20 Joints Ofteet
to adapt the offsets estimates in order to compensate tke I § ZOF gzg_@:
of information from the encoders. g, -

Starting the iCub head in four different configurations with ». . =~ =L
a full reset of the encoders between each experiment, tl.. Herations (*[1/Frea s) lterations (“[L/Frea) s)

proposed system was run, calibrating the joint offsetseAft

each experiment, the head was homed to the calibrated zero

position and the recorded gravity vector readings are shovin Generality of the calibration system

in table II. As previously mentioned, the system was implemented
We can see that the gravity vector is practically verticain two other robotic platforms (Kobian and Vizzy) with

Fig. 5. Repeatability: convergence of the joints offsets.



Joints Offsets

)
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Q
=}
=0
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o
Angle (deg)

Angle (deg)

1 1 1
100 150 200 250 300
Iterations ( *[1/Freq] s)

P T ’
(b) Vizzy head

L L L L L
350 400 450 500 550

(c) Kobian, joint offsets (head moving)

L L L L
600 100 200 500 600 700

300 400
terations ( *[L/Freq] s)

(d) Vizzy, joint offsets (head moving)

Fig. 6. Application of the online calibration procedure ther robot-heads, namely the Kobian head, Waseda Univefa)tyand the Vizzy head, IST/UTL
University, (b). Results for the Kobian joint offsets, jt8r0 till 6, are coded in colors blue, green, red, light bluerpte, yellow and black (c). Offsets
estimated along time for the seven joints of the Kobian (c) dmdsix joints of the Vizzy (d).

different kinematic models from the iCub. The results for
both calibrations are shown in figure 6(c) and (d). [1]
The convergence of the system to the correct offsets values
shows that the proposed online calibration methodology can
be applied to different robotic platforms regardless of thep
kinematic chain, when equipped with either image or IMU.

[3]
V. CONCLUSIONS

We have presented a robust, online calibration system fop
the joints of a robot head. This calibration system is able
to provide accurate estimates for the offsets of the joints[S]
irrespective of the head initial configuration.

The approach uses information from the embedded inertidf!
sensor, the relative encoders of the joints and vision and it
performs robustly in the presence of noise and disturbanceg]
such as backlash in some joints. As opposed to other
methors, our approach is very efficient and calibration can
be achieved in a matter of a couple of seconds and a fevs]
movements of the robot head.

Our work provides a way of correctly initializing the [g]
robot, no matter what the robot’s starting position might
be, which is absolutely mandatory before the robot c
engage in complex tasks. We present results with the iCu
head, as humanoid robots represent the best metaphor of
complex sensorimotor chains. To show the generality of tHét
method, we have also applied the same methodology {g;
other humanoid robots, such as the Kobian (from Waseda
University) and Vizzy (IST-Lisbon), with different kinertia
structures.

The relevance of this calibration procedure is that it aiow
the system to maintain an accurate internal model of its
sensorimotor chains. These models are key for the control
of humanoid robots, as the complexity of the tasks and
diversity of the operational environments may be overwhelm
ing. Instead, these models allow the system to contrast
its observations to model-based predictions, substgntial
simplifying certain tasks, a mechanism similarl to the one
presumably used by humans.

0]

[13]
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