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Abstract— This paper presents an analysis of uncertainty in
the calibration of a network of cameras. A global 3D scene
model, acquired with a LIDAR scanner, allows calibrating
cameras with non overlapping fields of view by means of the
DLT-Lines algorithm. Once the projection matrix is computed
for each camera, error sources are propagated to compute
estimates of each camera position uncertainty. We validate
the consistency of the uncertainty analysis with Monte-Cdo
simulations, and apply the technique in a real camera netwdk.
This allows to evaluate the accuracy ofDLT-Lines in real
settings.
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. INTRODUCTION (b)
Networks of cameras have become ubiquitous for covering %10 7 -y
large areas. While traditional applications consist nyosfl "‘:"Zaﬁf
surveillance tasks [1], recently robotic guidance and huma ; W‘.,;O’f‘-'-""?
robot collaboration has enlarged the applications pactfol »‘f"‘ﬁg‘ e -
camera networks. Intrinsic and extrinsic camera calibrei | L : 1 S
essential to locate detected events into world models §], s - O L

reliable and accurate calibration is usually required ideor
to successfully accomplish the desired tasks.

Different calibration methodologies behave differentty i
the presence of noisy data. For instance, [3] shows that the
accuracy of calibration depends on the number of parameters
the type of input data and the calibration optimization !
criteria. In a wide variety of cases, uncertainty propagati (c)
can be .analyZEd using f”jSt order techmqlfles [4]. Fig. 1. (a) Barcelona RobotLab camera network used for oliibration

In this work we consider the calibration methodologyexperiments. (b) Platform used to acquire LIDAR data. (c)sukte of
proposed in [5], that exploits the use of a rich LIDAR rangepropagating the error from the data to the projection canmeatrix and
data and images to calibrate a non-overlapped camera n;EF-” to the camera pose. The result have been augmented byoa 18

. . . or better visualization.
work [6], where a coarse calibration is performed manually,
followed by fine calibration matching 3D lines to 2D image
lines using theDLT-Lines (Direct Linear Transformation) . . ) )
algorithm [7]. The method provides estimates of the carsera®’e derive expressions for the uncertainty covariance af suc
projection matrix from the knowledge of 3D points and 2DF@Mera pose estimates. To do so, we compute a first order
lines. Once this projection matrix is computed, the Cameﬂ}j{learlzatlon of the method around the provided solutiod an

pose is readily obtained by factorization [8]. In this papel'S€ it to perform first order error propagation [9]. We vaieda
the obtained uncertainty with synthetic data based on Monte
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1. RELATED WORK and extrinsic parameters can be estimated by decomposing

Nowadays, camera networks are ubiquitous. Cameras B8l
be installed outdoors [10], or indoors [11], and can builth, [ine based Calibration, DLT-Lines
overlapped [12] or non-overlapped [13] shared views. Over-
lapping fields of view usually allow matching scene feature

. S .points. Image processing can be used for fine tuning the
among cameras and therefore provide extrinsic informati Beation of the lines in the image and therefore automagical
for calibration. Conversely, non-overlapped fields of view

A . o Improve the calibration data input.

require finding alternative sources of extrinsic, camera po The projection of a 3D lind; to the camera image plane
.y . . . . i

sitioning, information. For exam_ple, some outdpor/mck)qrcan be represented by the cross product of two image points

scenes have cars/people traversing the various fields of vie, projective coordinates

In [10] statistical tracking of traffic, based in image faais

allows finding the network topology. In [14], a method that li = myj X my;. (2)

infers the camera network topology is proposed, defining . T : .

arrival and departure regions. The system requires a prinrriAny point mq lying in the image linel; implies that

knowledge of each camera position that is computed usint my = 0. Hence, applylng the multiplication dﬁTto both
. - ﬁ?des of the perspective camera model, emg = 1.7 P My;,
GPS devices. Statistics about camera dependence areuiea(ieée1 ds to ' !
using vehicle recognition. TP M —0 3)
Auto-calibration methods can also be used to estimate ! K=
the camera parameters using image features. In [15], fuwhere My; is a 3D point in projective coordinates lying in
damental matrices are used to compute the relative camera The properties of Kronecker product [19] allow to obtain
positions. They utilize a vertical vanishing-point and ara form factorizing the vectorized projection matrix:
infinity homography. A common world coordinate system is T T
defined to eliminate the overlapping constrain. We propose Mg @) p=0, )
a method that leverages a 3D map and a non-overlappgflere p is the vectorization of the matrif. Considering
camera network where the planar assumption is eliminated > 12 pairs (M, l;), one forms a matrixd, N x 12, by
due to the use of 3D information. another advantage of ogtacking theN matricesMg ®IT. Alternatively, given a 3D
method is that it does not require special auto-localimatioline L; and its projection represented by the image line
devices to obtain initial position priors for the cameras. any 3D point lying onlL; can be paired with 2D ling. On
An analysis of camera calibration uncertainty is needeghe other hand, any image lingcan be paired with any 3D
to evaluate the quality of metric reconstructions that capoint lying onL;, i.e more than one image line can be paired
be inferred from the images in the camera network. Thigith a 3D point.
analysis in camera calibration has been discussed in [16],A least squares cost function can be expressed as:
concluding that the error inflicted by the bad estimation T oT
of intrinsic parameters affects the extrinsic parametéir es F(mM,p)=p B Bp, ®)
mation. Some precedents related to uncertainty analysis &jhereB is MIL ®|iT_ Which allows the formulation of the
presented in [17], where the calibration is preformed usingast squares problem
essential matrices. First order error propagation is pgegdo
between the calibration and the motion parameters. In [3],
the analysis is made measuring parameter correlation. We st.pp=1 (6)
propose instead a first order estimation analysis of the full
extrinsic calibration. The solution of the vectorized projection matrix is the tigh
singular vector corresponding to the least singular value o
I1l. CAMERA CALIBRATION B.
The pin-hole camera model maps the 3D projective spagg
to the 2D projective plane. Using homogeneous coordinates,

As proposed in [7], we use image lines instead of isolated

f):argrrgin F(m,M, p)

Factorization of the Projection Matrix

a scene pointM = [X Y Z 1] is imaged as a point = Having estimated the projection matri®, the camera
uvyT: intrinsic and extrinsic parameters can be obtained using QR
mM=PM=K[R {M 1) decomposition [20]. More precisely, given the sub-matrix

Ps..3 containing the first three columns & andS an anti-
where = denotes equal up to a scale factBrjs a 3x4 diagonal matrix
projection matrix,K is a 3x 3 upper triangular matrix

containing the intrinsic parameters of the cam&& a 3x 3 _ 001
. ; . : X S=|0 1 0], @)
rotation matrix representing the orientation of the camera 1.0 0

andt is a 3x 1 vector representing the position of the

camera [18]. The rotatiorR and translationt are defined the QR-decomposition allows factorizinBs.3'S = QU,
with respect to a fixed absolute (world) coordinate framewhereQ is an orthogonal matrix and is an upper trian-
Having estimated the camera projection matrix, the initins gular matrix. Then, the intrinsic parameters and the romati



matrices are computed &= —SU"SandR= Q'S Finally, B. Error propagation to the camera center

the camera position is obtained with= K~*p,, wherepy is Propagating uncertainty from the estimat®dinto its

a 3x 1 vector containing the fourth column &f*. decompositionK[R t], or the separate intrinsic parame-

ters (scaling, shear or principal point), involves compgti

the Jacobian of the transformation starting from the QR-
In this section we derive first order error propagatiorlecomposition and ending with the calibration parameter

formulas for theDLT-Linescalibration process. In a first step extracted fromP (see Sec.lll-B). Despite straightforward,

we derive the expression propagating error variance in thhis process involves lengthy expressions, where in many

calibration data to error variance in the projection matrixxases one wants just an indicator of the precision of the

entries. In a second step we derive error propagation frogalibration. The uncertainty of the camera projection eent

the matrix entries variance to the camera projection centeis one indicator of the precision of the calibration that can

be computed using concise expressions.

A. DLT-Lines error propagation Denoting the projection center referred to the world coor-
As stated, we are interested in the least squares solutiginate system abl = [Xc Yc ZJ", one has thablc projects

to equation (4). This section explores the sensitivity ¢ th to a point at infinity,mc=[0 0 4T =0, i.e.

equation, and how measurement error propagates to the final d=p [MT 1]T (12)

estimate. ¢
The optimization problem in Eqg. 5 can be seen as a bladRepresenting the projection matrix as a collection of

box which accepts lined;{ and points ;) and outputs the columnsP =[p; p2 p3 p4, the projection center can be com-

IV. ERROR PROPAGATION

least squares estimate of the projection maix puted as the solution of the linear system of three equation i
three unknowns|p; p2 ps]M: = —p4. Considering that one
P=f(ly,....In,Mg,..My) (8)  wants to apply operations (derivatives) on the transfoionat

from P to M, it is convenient to derive a closed form for
M. Using the Cramer’s rule to solve the system, one has

Xc = det([—pa, P2, ps])/W

_ T

2P =t 2w Iy ®) Yo =det([p1, —pz, ps])/W (13)
What remains is to compute the Jacobian fofi.e. Js. Zc =det([p1, P2, —pa])/W

Although f does not have an explicit solution (it is thewhere W = def([p; po ps]). It is interesting to note that

result of an optimization problem), an implicit system canrhe choice of the world coordinate system is key to obtain
be written from the Karush-Kuhn-Tucker (KKT) conditions:concise expressions. Instead tof K~1p,, one hasM =

Assumingf is differentiable, a first order Covariance prop
agation is obtained from

P;.1.ps which differs fromt just by a rotatior? and avoids
T — 3x3M4
G(I,M,p,A) = {ZE(LM)B('!M) p+2Ap =0, (10) decomposing® = K|[R t.
pp-1 =0. Finally, one propagates the error variance of the projactio

The implicit function theorem [9] can now be used to providénatr'x' 2p, _t‘? the error variance of the projection centes,
I as an explicit formula

3 ( ) 1 ( )T zC = ‘]CZP‘]Jv (14)

f = N .
dtpA} M) 13x6N whereJ; denotes the Jacobian of the veckdy with respect

Note thatJs is a matrix of size 1% 6N, while Zp is of size to theP matrix elements.
12x 12. In the calculation okEp we just use the first twelve
rows of J; since the last row is the row equivalent to the
Lagrange multiplier. In order to validate the proposed uncertainty analysis we
It is worth noting that the covariance of the line measuresonduct some experiments in a synthetic environment for
ments is actually obtained from 2 image points. As such, which one has available precise and accurate ground truth.
first order estimate for these covariances is obtained frofn addition, we apply the proposed uncertainty analysis to

V. EXPERIMENTS

the linearization of Eq. 2: a real setup based on an outdoor scene encompassing a
number of buildings, the Barcelona RobotLab, which has
= Zmymy JliT (11) bgen reconstructe_d in 3D u_sing LIDAR data, thus providing
directly the required 3D information for th®LT-Lines
whereJ;, is the Jacobian of equation 2. calibration methodology.

1if the diagonal of K contains negative values then it is correctedA- Synthetic eXperimentS
tc)i)i/ a%o(séi rggl(tlréliylgg ( %’S , d';&"”@[ Dr,"atgﬁ- IIDT R'_V'a:'a_b’%ftf“_@: In this section the variance of the entries of the projection
In addition, since+P are both solutions of Eq.4, the factorizationRfmay ~ Matrix, Zp, predicted using the proposed uncertainty analysis
imply det(R) = —1. If det(R) = —1 then the factorization dP is repeated
using —P. 2Noting thatPs,3 = KR and ps = Kt one hasM; = (KR)~1Kt = R"1t.
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Fig. 2. Analysis of camera calibration uncertainty. (a) VRMetup. (b) RGB image. (c) RGBD intensity image. (d) RGBDgmrimage. Each line
defined in the RGBD image corresponds to a line in the RGB imagd leads to a 3D line in the world/RGBD coordinate systesh.30 lines form
the required input data fdbLT-Linescalibration. (f) Relation between the error in the RGB imagerdinates and the projection matrix parameters. (g)
Monte Carlo simulations of the same relation between image standard deviation and the standard deviation of tlegeption matrix elements.
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takes into account the structure of the scenario.

The first synthetic setup is formed by two cameras, namely
a mobile color-depth (RGBD) camera which collects 3D data
and a fixed RGB camera. See Fig 2(a). Figure 2(b) shows
a synthetic image simulated for the RGB camera, while
Figs. 2(d) and (e) show synthetic intensity and range images
simulated for the RGBD camera.

In this setup, we analyze what happens when just the RGB
image has noise. In other words, the noise in 3D points is
set null @y = 0)2. Uncertainty analysis was done using both
the proposed propagation methodology and Monte Carlo
simulations. Monte Carlo was configured to do 300 runs for
each level of noise. The standard deviation of the noisedn th
2D points varies from 0 to 6 pixelsf, = 0:.06: 6 pixels).
Having all the runs, the variance of every entry Rfi.e.
Zp(jj) fori=1..4 andj = 1..4, has been estimated.

The linear propagation of the standard deviation of each of
the entries ofP, computed with the proposed methodology,
is shown in Fig. 2(f). As expected some entriesPofare
more robust to noise than others. Figure 2(g) shows the
Monte Carlo simulation results for each level of noise, agai
for all the entries ofP. Plots (f) and (g) indicate that
the analytical values obtained using the linear propagatio
analysis match those of Monte Carlo results when for values

The second setup is based on a single RGBD camera.

conducted in two d_ifferent scengrios in order to show thqt th 315 improve readability, variance is written using upperecas and
proposed uncertainty propagation methodology effegtivektandard deviation is written using lower case,



Image camera

The setup can be seen in Fig. 3(a), which corresponds to
a typical 'L’ shaped corridor. Camera calibration ground
truth is known and is used to assess the validity of the
noise propagation estimation method. Figure 3(b) shows
the theoretical value foop,4) in the presence of noise
simultaneously in both the image and the range values. The
plot shows the correlated effects between the image and
range noise values.

Monte Carlo simulations were also run for this setup. Plots
(c) and (d) show both the analytic and estimated value of
for P(2,4) as a function of variations in image and depth
noise.

Plot (c) shows once more that the first order approximation
is only valid up to aroundsy, = 3 pixels. The theoretical
prediction is nevertheless accurate for lower levels of@oi
showing that the proposed uncertainty analysis takes cor-
rectly into account the scene structufle, M;). Nonlinear
effects have less influence for variations of range as shown
in plot (d). B

B. Experiments in real scenarios

For our experiments we use a mobile Pioneer 3AT robot
equipped a 3D range sensing device consisting of a Hokuyo
UTM-30LX laser mounted on a slip-ring. The laser res-
Olu“c_)n_ IS _SGt to _0-5 degr_ees in azimuth with 360 deg_reﬁg. 4. Indoor experiment. We apply the calibration methsthg a point
omnidirectional field of view, and 0.5 degrees resolutiorloud and one of our robot cameras. The top frame shows tes lised,
in elevation for a range of 270 degrees. Each point cloud the inset in the bottom frame shows the computed coearigoses.
contains 194,580 range measurements of up to 30 meters

with noise varying from 30mm for distances closer to 10m . . . .
and up to 50mm for objects as far as 30m. Our rob D data. In this work 3D data is acquired using a TOF

includes also two Flea2 cameras [21]. The dataset used fefnSor, such as LIDAR, or simply using color-depth (RGBD)

the experiments is the Barcelona RobotLab dataset [6]. cameras. More conventional scenarios can also use floor
The computation of straight lines from the point cIouopIanS’_ wherg grounq I|ne_s (mte_rsectlon_s of walls and floor)

relies on identifying and intersecting planes. The methotaomblned with vertical lines (intersections of nonpaidalle

to segment planar regions is motivated by Felzenszwalp/é!ls) form the necessary 3D da?a. . .
algorithm to 2D image segmentation [22], and extended to Our methodology starts by estimating the camera projec-

deal with non-uniformly sampled 3D range data [23].They!o" matrix using 3D and image lines using tB&T-Lines
image and 3d lines are associated manually. algorithm. In other words, the projection matrix is estietht

We analyze pose error in different indoor and outdoo'?y minimizing a quadratic cost-function (MLS). The facttha

scenarios. The first experiment involves an indoor scenariBal'brat'on corre;ponds to the_m|n|m|zat|on of_a co_st fuorct
In this scenario, a camera calibration pattern is used lows propagating the covariance of the calibration data t

compare classical image based calibration with our 3D-2fstimate the covariance of the projection matrix. G|ve_n the
line-based calibration scheme. We show the result in Fig. gstimate of the covariance of projection matrix we can fynall

The next experiment consists in the estimation of pos[%ropagate the uncertainty to the camera !ocat|on. .
uncertainty for the calibration of the camera network ex- We have demonstrated that our uncertainty analysis is con-

plained in [5]. Calibration results for a subset of 3 are showS'stent by testing it with Monte-Carlo simulations. Beside

in Fig. 1. The top frames contain the camera images, &€ studied our analysis approach in a real non-overlapped

reprojected 3D point cloud, and the 3D lines used for cali€@Mera network from the Barcelona Lab dataset. .
bration. The bottom frame shows again the 3D lines used for AS future work we propose exploring novel data acquisi-
calibration and the estimated 3D poses and their associaféy! @nd filtering modalities which allow charactering less

position covariances. These covariances are magnified §anServatively the error caused by extracting line feature
times to ease visualization from the LIDAR range and camera sensor.

VI. CONCLUSIONS AND FUTURE WORK REFERENCES

In this paper we presented a methodology for estimating!] J:-H. Kim and B.-K. Koo, “Convenient calibration methéat unsyn-
the calibration uncertainty of a networked camera. Calibra chronized multi-camera networks using a small referengecgb in
% : Proc. IEEE/RSJ Int. Conf. Intell. Robots Syafilamoura, Oct. 2012,

tion data has been assumed to combine 2D (image) and pp. 438-444.
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