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Abstract. This paper departs from traditional calibration in the sense
that the pixels forming the camera have a completely unknown topol-
ogy. Previous works have shown that the statistical properties of natural
scenes, and a uniform motion of a camera both in translation and rota-
tion, allow determining the topology of a central camera [10, 6]. Here we
show that there is a quasi-linear relationship between time-correlation
and angular inter-pixel distance, considering small angles and a simple
scenario encompassing one bright light on a dark background. The topol-
ogy reconstruction algorithm is therefore based on correlating time series
(pixel streams) acquired by the pixels of the moving camera. Correlations
are converted to inter-pixel distances using a fixed linear transformation.
Distances are finally embedded on a plane using a manifold learning
methodology, namely Isomap. Experiments on real datasets have been
conducted and have shown that the theoretical derivations are accurate
for the considered scenario.

1 Introduction

Traditional imaging sensors are formed by pixels placed on a rectangular grid,
and thus look like calibrated sensors for many practical purposes such as local-
izing local extrema, edges or corners. In contrast, the most common imaging
sensors found in nature are the compound eyes, collections of individual photo
cells which clearly do not form rectangular grids, but are very effective for solv-
ing various tasks at hand and thus have inspired the design of many artificial
systems. Völkel et al. studied several types of eyes and discussed the miniaturiza-
tion of imaging systems [15]. Neumann et al. [9] proposed a compound eye vision
sensor for 3D ego motion computation. Recently, Micro-Electro-Mechanical Sys-
tems fabrication technologies were applied to build artificial compound eyes on
planar surfaces [5].

In other words, novel fabrication technologies allow creating sensors with
pixel arrangements (topologies) tuned for the tasks at hand. In the cases where
the sensor topology is not a rectangular grid using traditional calibration method-
ologies [1, 16, 13] will not be possible. Hence, the question arising here is: how
to calibrate sensors with unknown topologies? In the case that the sensors are
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mounted on mobile robots the question can be restated as: can we calibrate an
unknown topology of a moving sensor just with the data acquired by the sensor?

Pierce and Kuipers have shown that it is possible to reconstruct the topology
of a group of sensors just by knowing their output [12]. They use natural prop-
erties of an agent’s world in order to infer the structure of its sensors. Olsson et
al. improved the methodologies introduced by Pierce and Kuipers by adding in-
formation distances and, in particular, Hamming metrics [10, 11]. They compute
the position of several sensors of a Sony Aibo robot, which has, among other
sensors, one camera sub-sampled to 8 × 8 pixels. Hyvarinen et al. showed that
imaging natural scenes allow defining a neuronal topography using Independent
Subspace Analysis [7]. In [6], Grossmann et al. proposed a method for calibrat-
ing a central imaging sensor based on a number of photocells. They need to
know (estimate) a priori a function curve relating correlation (or information-
distance) and distance-angles. Their algorithm has been tested on a small set of
pixels (photocells), about one hundred, as otherwise the computation time and
memory would be too large. Recently, Censi and Scaramuzza [2] showed that it is
possible to dispensate with the prior estimation of the correlation-to-angle curve.
Their method estimates this curve and calibrates the sensor simultaneously.

In this work we want to do auto-calibration of central sensors with a number
of pixels orders of magnitude larger than [11, 6] and 50% larger than [2]. We
approach the computational complexity with Multi Dimensional Scaling (MDS)
like algorithms. A relatively old but very effective in the presence of noise free
data is the Classical MDS [3], based on Euclidean distances. Its goal is to find
a representation of a data set on a given dimensionality from the knowledge
of all interpoint distances. Several new algorithms evolved from MDS, such as
Isomap [14], where geodesic distances induced by a neighborhood graph are used
instead of Euclidean distances.

The structure of the paper is the following: in Sec. 2 we describe Isomap
applied to topological calibration; in Sec. 3 we study a simple black and white
scenario and show there is a linear relationship between the correlation of the
time series acquired by pairs of pixels and the inter-pixel angle; in Sec. 4 we
show some experimental results, and finally in Sec. 5 we draw some conclusions.

2 Auto-Calibration Methodology

A discrete camera is defined as a collection of pixels, corresponding to a central
(perspective) projection model, organized in a general topology. In this work we
assume point pixels, meaning that the integration area of each pixel collapses to
a point. Without loss of generality we denote pixel orientations as a vector on
the unit sphere xi ∈ S

2. The collection of pixel orientations defines the camera
topology, which is unknown and is to be found.

The classical Multiple Dimensional Scaling (MDS) algorithm [3] provides a
simple way of embedding a set of points in an Euclidean space given the inter-
point distances. Noting that the squared distance function between two points



is a linear transformation of the inner product of the points

d2(xi,xj) = 〈xi − xj ,xi − xj〉 = 〈xi,xi〉 − 2〈xi,xj〉+ 〈xj ,xj〉 (1)

allows one to write all distances as inner products [4]. More precisely, collecting
all squared distances in a matrix, D2 = [d2(xi,xj)] a matrix of inner products
G is obtained from D2 through the transformation G = −JD2J/2, where J =
(I − 1/n), I is the n × n identity matrix and n is the number of the elements
of the data. Next, one observes that if the desired point embedding is collected
in a matrix X = [x1 x2 · · · xn], then G = XTX. Therefore X can be obtained
(reconstructed) up to a unitary transformation using an SVD decomposition, as
G = XTX = UΣUT = U

√
Σ
√
ΣUT , and thus XT = U

√
Σ.

The classical MDS works well when the distances are Euclidean and when the
structures are linear. However, when the manifolds are nonlinear, the classical
MDS fails to detect the true dimensionality of the data set. Isomap is built on
classical MDS but instead of using Euclidean distances it uses an approximation
of geodesic distances [14]. These geodesic distance approximations are defined
as a series of hops between neighboring points in the Euclidean space using a
shortest path graph algorithm such as Dijkstra’s.

In our particular case, this algorithm is used to provide a pixel embedding
given the inter-pixel distances estimated from the pixel stream correlations as
detailed in the next section.

3 Distance Between Pixels

Prior works have experimentally shown a relationship between the normalized
cross correlation of pixel streams and the angular inter-pixel distance. This sec-
tion further explores this coupling by providing analytical results for a particular
observed static scenario and camera motion.

Each camera pixel observes the environment at every time instance produc-
ing a scalar value corresponding to the observed brightness. A pixel-stream fi
is the time-series obtained from the observations over time by the ith camera
pixel. When two of these streams fi and fj are considered, one can define the
normalized cross correlation as

C(fi, fj) =
E [fifj ]− E [fi]E [fj ]√

(E [f2
i ]− E2 [fi])

(
E
[
f2
j

]
− E2 [fj ]

) (2)

Grossmann et al. [6] proposed that the inter-pixel distance between two pix-
els xi and xj is related to the normalized cross correlation of their pixel streams
C(fi, fj). Although the existence of this relation is proposed, no specific trans-
formation is provided and in [6] the authors propose to learn it as a look up
table from observations of the environment.



Black and White Scene - As referred, to better understand the relationship
between correlation and angular distance a particular simple environment is
proposed: (i) the camera is at the center of a unit sphere, which is black every-
where except for a hard edged white circular hub-cap with angular radius ρ, (ii)
the camera motion covers uniformly the rotation configuration space SO(3) and
acquires an infinite time series with each of the pixels.

Equation (2) states that the theoretical correlation value can be computed
from E [fi], E [fj ], E

[
f2
i

]
, E

[
f2
j

]
and E [fifj ]. Since the camera motion is uniform,

there is no difference in the expected values of the isolated pixel streams, i.e.
E [fi] = E [fj ] and E

[
f2
i

]
= E

[
f2
j

]
. Without loss of generality it is assumed that

each pixel reports a value of 1 when it is pointed towards the white circular cap
and a value of −1 when pointed towards the black area (note that the definition
of correlation is invariant to the choice of these values). This particular choice
leads to E

[
f2
i

]
= E

[
f2
j

]
= 1, and only E [fi] and E [fifj ] are left to be computed.

Expected value of a pixel stream, E [fi] - Since the camera pose distribution is
uniform, the probability p of a point pixel observing the white hub-cap, corre-
sponds to the surface area that the hub-cap occupies [8], Ad = 2π(1 − cos(ρ)),
divided by the total surface area of the observed unit sphere, As = 4π, i.e.
p = (1− cos(ρ))/2. The expected value for the pixel stream is thus

E [f ] = 1 · p+ (−1)(1− p) = − cos(ρ). (3)

(a) (b) (c)

Fig. 1. Illumination and the information acquired by pixels xi and xj . A light source
is seen as an illuminating hubcap (a). Instead of infinitesimal pixels, one can consider
enlarged pixels and an infinitesimal illumination (b). The intersection of the pixel areas
C = A ∩B 6= ∅ if θ < 2ρ (c).

Expected value of the product of two pixel-streams, E [fifj ] - To compute E [fifj ]
first notice that the pointwise result of fifj is either 1, when both pixels observe
the same color, or −1 when one pixel observes the interior of the circular hubcap
and the other does not.

Figure 1 shows two pixels xi and xj separated by an angular distance θ.
A pixel observes white whenever the center of the white hubcap falls within a



distance ρ of the pixel (within circular region A in the figure or within circular
region B, depending on the considered pixel). Thus the probability q of exactly
one pixel observing the white circle is given by:

q = (Area(A) + Area(B)− 2Area(C))/Area(Sphere) (4)

where the intersection area C is removed since in this area both pixels measure
white. Here, Area(A) and Area(B) are equal to the previously computed Ad. The
intersection area of two hub-caps, Area(C), has not been found in the literature
and was obtained as a surface integral (due to space constraints the details are
not given here). The result is zero when θ ≥ 2ρ and, if θ < 2ρ, then

Area(C) = 2π (1− cos(ρ))− 4 asin

(

sin(θ/2)

sin(ρ)

)

+ 4 cos(ρ) asin

(

tan (θ/2)

tan(ρ)

)

(5)

Combining (5) with (4) and substituting into E [fifj ] = 1(1− q) + (−1)q yields

E [fifj ] =

{

1− 4
π
asin

(

sin(θ/2)
sin(ρ)

)

+ 4
π
cos(ρ) asin

(

tan(θ/2)
tan(ρ)

)

if θ < 2ρ

2 cos(ρ)− 1 if θ ≥ 2ρ
. (6)

Computing the correlation - Now that all the values are available, C(fi, fj) can
be computed as in expression (2):

C(fi, fj) =





−

4
π asin( sin(θ/2)

sin(ρ) )− 4
π cos(ρ) asin(− tan(θ/2)

tan(ρ) )+sin2(ρ)

sin2(ρ)
if θ < 2ρ

1− 2(cos(ρ)−1)
sin2(ρ)

if θ ≥ 2ρ
(7)

0 20 40 60 80 100 120 140 160
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

Angular distance between pixels (o)

 

 

10o

30o

50o

70o

90o

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

θ* , E
xt

im
at

ed
 a

ng
ul

ar
 d

is
ta

nc
e 

be
tw

ee
n 

pi
xe

ls
 (

o )

θ, Angular distance between pixels (o)

← ρ=90o

↑  ρ=70o

↑  ρ=50o

↑  ρ=30o

↑  ρ=10o

(a) (b)

Fig. 2. Correlation v.s. angular distance between pixels for several observed circle sizes.
Theoretical values computed from equation (7) with the tangents at the origin to each
curve overlayed in light gray (a). Approximation error of using the second order Taylor
approximation, where for each curve empty circles correspond to correlation equal to
0.5 and full dots correspond to zero correlation (b).

The plot of C(fi, fj), shown in figure 2, reveals an almost perfect affine
function for small angular values.



Property 1 The correlation based distance d(xi,xj) = 1 − C(fi, fj) is (i) a
linear function of the inter-pixel angle θ = x̂ixj when the observer has uniform
random motion in all rotation d.o.f. and the spherical scene has one hemisphere
light and the other dark, i.e. ρ = π/2. Otherwise, (ii) the distance d(xi,xj) has
a linear second order Taylor series expansion around θ = 0 when ρ 6= π/2 (i.e.
zero second order term).

Proof. Replacing ρ = π/2 in eq.(7) one obtains d(xi,xj) = 1 − C(fi, fj) =
1− (1− 2θ/π) = 2θ/π as stated in (i).

Demonstration of (ii) is based in the second order Taylor expansion of the cor-
relation function (eq:(7) case θ < 2ρ), d(xi,xj) = 1−C(fi, fj) ≈ 2θ/(π sin(ρ))+
0θ2 which asserts that the second order Taylor expansion has a null second order
term, having therefore a linear relationship with the angular distance θ. Figure 2
(b) illustrates this property is valid for values of C > 0.5 (open circle mark) and
even when C > 0 (dot mark) the estimated distance is close to the real distance.
Figure 2 (a) shows a function of correlation in terms of distance where the Taylor
expansion for each curve is shown in gray. ⊓⊔

For the particularly simple scenery described in this section it is clear that
for correlation values above 0.5 the look up table needed in [6] can be replaced
by a single slope parameter dependent on the size of the observed hubcap. We
propose to further drop this requirement for small sensors by embedding the
locations in a plane up to a scale factor. The proposed method consists of directly
converting the obtained correlation values to distance values and then applying
the Isomap algorithm [14] to obtain the reconstruction. Hence we will consider
that the distance between two pixels whose correlation is above 0.5 is given by
d(xi,xj) = 1− C(fi, fj).

4 Results

In order to test the proposed topology estimation methodology two experiments
have been conducted using a Point-Grey Flea camera and a cable of optical
fibers, Fig. 3 (a). The 2475 fibers observed by the camera are the longest of the
whole cable (the remaining being too small to be used), Fig. 3 (a) red dashed
line. The ground truth of the topology was estimated using 2 periodic signals
one vertical and the other horizontal. One can use the phase of each fiber stream
to build a good estimation of the topology.

The calibration experiments were performed observing the circular projection
of a laser beam targeting the fiber bundle. A set of 7978 images were obtained
with the laser illuminating different sets of fibers in each case.

In order to check the dependence of the obtained topology on the number of
neighbors, Isomap was run for different values of this parameter. Figure 3 (b)
shows the resulting Procrustes error between ground truth and each estimated
topology. We conclude that better results are obtained when less than 10% of
neighbors are used. This is due to the fact that when more neighbors are used, we
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Fig. 3. (a) Experimental setup. Part of the fiber bundle used in the experiments is
marked by the red dashed line; (b) Error vs the number of neighbors; (c) Histogram
of the correlation vs distance.

leave the proposed correlation linear work zone (C > 0.5), as shown in Fig. 3 (c),
and theoretically predicted in Fig.2 (a).

Figure 4 validates empirically the topology obtained for the fibers bundle
using 20 closest neighbors. Figure 4(a) shows the image observed when a letter
’P’ is shown to the fiber bundle. Without the topology correction the letter
is unreadable. Figure 4(b) shows the image obtained with the ground truth
topology. As expected, the letter ’P’ is now readable. Figure 4(c) shows the
results of the topology estimation using the proposed methodology. The letter
’P’ is reconstructed with almost no difference relative to the ground truth.

(a) (b) (c)

Fig. 4. Topology estimation. (a) Image acquired by the camera when the letter ’P’ is
shown in front of the fiber bundle; (b) Ground truth; (c) Estimated topology.

5 Conclusions and Future Work

In this paper we consider cameras as simple collections of fibers, arranged with
an unknown topology. We show that the topology can be estimated with a fairly
simple experimental setup. On the theoretical side we demonstrated that, in a
simple scenario where the camera is in the center of a spherical-surface, half-
white and half-black, the correlation of pixel-streams is linearly related with the
inter-pixel angle. In the cases where the white hub-cap is smaller than a hemi-
sphere, we show that the relationship between correlation and inter-pixel angle is



approximately linear for high correlation values. Combining the inter-pixel angle
estimation, directly from correlation, with manifold learning for embedding all
the inter-pixel angles, has proved to be an effective methodology for topology
estimation. Promising results have been obtained with the proposed topology
estimation methodology applied to a prototype camera. Future work will focus
on the demonstration of linearity for larger classes of scenarios.
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