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Abstract: In this paper we approach the problem of calibrating topologically a discretecamera mounted on a robotic
pan-tilt basis. In particular this work is focused in choosing the coordinatesystem of the camera consistently
with the basis. The topological calibrating methodology of the sensor is based on multidimensional scaling
(MDS). The choice of the coordinate system is based in performing known pan and tilt movements with the
robotic basis. These movements allow estimating the arbitrary unitary transformation introduced by MDS like
algorithms, and therefore compensate image rotation and vertical or horizontal mirroring. Given a consistent
camera coordinate system and the odometry of the robotic basis during thecapture of sequence of images,
allows building image mosaics with discrete cameras.

1 Introduction

Traditional imaging sensors are formed by pixels
precisely placed in a rectangular grid, and thus look
like calibrated sensors for many practical purposes
such as localizing image edges or corners. In contrast,
the most common imaging sensors found in nature are
the compound eyes, collections of individual photo
cells which clearly do not form rectangular grids, but
are still interesting to mimic as they are very effective
in solving various tasks at hand.

In the cases where the sensor topology is not a
rectangular grid, one can not use traditional calibra-
tion methodologies [1, 12, 10, 7]. Despite not forming
in general regular grids, recent works show that com-
pound imaging systems, i.e. discrete cameras, can be
autocalibrated. In the seminal work [8] Pierce and
Kuipers have shown that is possible to reconstruct the
topology of a group of sensors just by knowing their
output. Grossmannet al. [5] shown that the func-
tion relating signal-correlation and distance-angles of
the photosensors of a camera can help calibrating an-
other camera. Recently Galegoet al. [6] proposed
a methodology to autocalibrate a central imaging sen-
sor which is effective even without a priori calibration
information.

In this work we want to do auto-calibration of cen-
tral sensors with a number of pixels orders of mag-
nitude larger than [5]. In addition, we assume that
the sensors are mounted on robotic pan-tilt basis, and
therefore want the camera to have a reference frame
consistent with (linked to) the reference frame of the
basis. We approach the computational complexity
with Multi Dimensional Scaling (MDS) like algo-
rithms [2, 11, 9]. Classical MDS [2] allows finding
a representation of a data set on a given dimension-
ality from the knowledge of all interpoint Euclidean
distances. We approach the problem of matching ref-
erence frames by performing pan-tilt movements with
the robotic basis and observing the flow in the topo-
logically calibrated camera. The flow vectors allow
computing a unitary transformation which matches
the camera and the basis frames.

The structure of the paper is the following: in
Sec.2 we describe camera model; in Sec.3 we de-
scribe MDS/Isomap applied to topological calibra-
tion; in Sec.4 is proposed a rotation and/or mirroring
correction methodology for the coordinate frame of
the imaging sensor; in Sec.5 summarizes the complete
calibration methodology; in Sec.6 we show some ex-
perimental results, and finally in Sec.7 we draw some
conclusions and propose some future work.
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(a) Camera and basis (b) Coordinate frames (c) Images at D andE (d) Projection model

Figure 1: Model of a discrete camera mounted on a pan-tilt basis. The optic-fiber bundle, points E to D in (a), twists the input
image (d). Vectorsv1 andv2 allow computing a unity transform to obtain{4} (b). Projection model and raxels notation (d).

2 Discrete Camera Model

Discrete cameras, as conventional (standard) cam-
eras, are described geometrically by the pin-hole pro-
jection model. Differently from standard cameras,
discrete cameras are simply composed of collections
of pixels organized as pencils of lines with unknown
topologies.

Figure 1 shows a model of a discrete camera.
The discrete camera is composed by one conventional
CCD camera (see Fig. 1(a) labelA), one cable of optic
fibers mounted in front of the camera (B), and one ex-
tra lens mounted in front of the fibers (C). The fibers
of the optic fiber cable are randomly mixed inside the
cable, meaning that a fiber has a position(ue,ve) at
one end (E) and at the other end (D) has a different
position(ud,vd), i.e. (ue,ve) 6= (ud,vd).

Grossberg and Nayar[4] have introduced the con-
cept of raxel to allow representing more general cam-
eras. A raxel is in simple terms an abstraction of the
position of a light (punctual) sensor. Instead of repre-
senting the real position of the light (punctual) sensor,
a raxel is just representing the direction of the chief
ray associated to the sensor. A raxel is characterized
as a 3D position and a direction vector.

In this work we consider central discrete cameras.
These cameras are represented as collections of rax-
els. Since the cameras are central, the 3D position
associated to each raxel can be the same for all raxels.
Raxels can therefore be represented as vectors on the
unit spherexi ∈ S

2. Each raxel can also be character-
ized by two values,(Ωi ,µi). Ωi is the angle between
the principal axis and the incoming ray (see Fig. 1(d)).
The azimuthal angleµi characterizes both the angular
location of an imaged point and the plane containing
a raxel.

In uncalibrated discrete cameras is not possible to
define corner points or image lines since the topology

is unknown. The only information available for cam-
era calibration are a set of pixel streams,{ fi}, where
each pixel-streamfi corresponds to a time series of
brightness values captured byith photocell (pixel).
Galegoet al. [6] have shown that the normalized cross
correlation of two pixels streams,C( fi , f j), is affine
to the angular distance of pixels,d(xi ,x j), when ob-
serving a circular object. Having all-to-all raxel an-
gular distances, one can use MDS to estimate the full
topology. In calibration methodology can therefore
be summarized as (i) receive a set of pixels streams,
(ii) compute the cross correlation between all pixels
streams, (iii) convert all correlation values into angu-
lar distances, and finally (iv) estimate the topology us-
ing the distances previously computed. See Fig. 2.
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Figure 2: Overview of the calibration process



3 Topology Reconstruction

The topology reconstruction block of Fig. 2 trans-
forms distances into a topology. This is done using
Multidimensional Scaling (MDS) or a MDS derived
algorithm.

The classical Multidimensional Scaling algo-
rithm [2] provides a simple way of embedding a set of
points in Euclidean space given their inter-distances.
This is done by collecting all squared distances in a
matrix D2 = [d2(xi ,x j)]. D can be transformed into
a matrix of inner products by inverting the previous
linear relation and forcing the resulting embedding
to have zero mean [3]. More precisely, the matrix
of inner productsG is obtained fromD2 through the
transformationG = −JD2J/2, whereJ = (I − 1/n),
I is then× n identity matrix andn is the number of
the elements of the data. Next, one observes that if
the desired point embedding is collected in a matrix
X = [x1 x2 · · · xn], then

G=







〈x1,x1〉 . . . 〈x1,xn〉
...

. . .
...

〈xn,x1〉 . . . 〈xn,xn〉






= XTX. (1)

X can thus be obtained (reconstructed) up to a unitary
transformation using an SVD decomposition, asG=
XTX =UΣUT =U

√
Σ
√

ΣUT , and thusXT =U
√

Σ.
The classical MDS works well when the distances

are Euclidean and when the structures are linear, how-
ever, when the manifolds are nonlinear, the classical
MDS fails to detect the true dimensionality of the data
set. Isomap is built on classical MDS but instead of
using Euclidean distances it uses an approximation
of geodesic distances [11]. These geodesic distance
approximations are defined as a series of hops be-
tween neighboring points in the Euclidean space us-
ing a shortest path graph algorithm such as Dijkstra’s.

4 Rotation and Mirror Correction

MDS, and derived methods as Isomap, provide a
reconstruction of the vectors collected inX up to a
unitary transformation. Since the camera is mounted
on a mobile robot, we propose to fix the unitary trans-
formation in accordance with the motion degrees of
freedom of the robot.

Having reconstructed the topology of the imaging
sensor allows doing 2D interpolation and therefore
computing (approximated) directional derivatives and
finding feature points using standard image process-
ing techniques. Then, considering for example that a
camera has experienced fromt1 to t2 a leftwards pan

motion and fromt3 to t4 an upwards tilt motion, where
ti denote timestamps, allows computing two median
optical-flows (or disparities),v1 andv2. The two flow
vectors allow therefore setting the coordinates of a
pixel location to be first horizontal, growing right, and
the second to be vertical, growing down:

Xf = TX = [v̂1 v̂2]
−1X (2)

wherev̂1 and v̂2 denote normalization to unit length
of v1 and v2. Note that noise prevents perfect or-
thogonality, i.e. vT

1 v2 6= 0, in which case we rotate
both vectors in opposing directions to meet orthog-
onality. HavingvT

1 v2 = 0 with nonzerov1 and v2,
implies |det(T)| = 1, where det(T) = −1 indicates a
mirroring effect found in the reconstructed topology.

5 Complete Calibration
Methodology

Summarizing the previous sections, estimating
and embedding the topology of a central imaging sen-
sor involves acquiring a set of images. Since the cor-
relation of pixel-streams,C( fi , f j) is invariant to shuf-
fling of the time-series (as long as both time series
are affected by the same shuffling), these images can
be acquired either as a continuous sequence (i.e. a
video) or as discrete individual images. In the end
one wants to obtain the embedded pixel locations,
Xf = [x1 x2 · · ·xN]. The required steps are the fol-
lowing:

1. Binarize data using a fixed threshold. Each value
within the pixel stream is set to 1 or 0.

2. Compute the normalized-correlations between
each pixel-stream and all the others.

3. Convert the inter-pixel correlations into distances,
using the linear transformationd(xi ,x j) = 1−
C( fi , f j).

4. Use Isomap to compute the topology of the sensor.

5. Choose a coordinate system for the camera based
on the supporting robot motion (Eq.2).

6 Results

In order to test the proposed topology estimation
methodology four experiments have been conducted.
In the first three experiments we use a standard cam-
era so that the results can be easily compared with the
ground truth. In the fourth experiment we use a pro-
totype discrete camera based in a (twisted) cable of
optic fibers.



(a) Test image (b) 2×4
permutation

(c) 2×4
permutation

(d) 10×10
permutation

(e) 100×100
permutation

(f) 1 of 14784
calibration

images

(g) 100×100
permutation

(h) 3 of 1002

pixel streams
(i) Topology found (j) Topology found rotated

(Eq.2), bottom left zoomed

(k) Reconstruction
after 2×4 permutation

(l) Reconstruction after
10×10 permutation

(m) Reconstruction after
100×100 permutation

Figure 3: Estimating the topology of a 100×100 sensor. Test image before permutation (a). Permutation example of 2×4
blocks (b). Permutations of pixel-streams in 2× 4 blocks, 10× 10 blocks, or 100× 100 (all) pixels, illustrated on the test
image, (c,d,e). Typical image used during calibration (f). Typical image used during calibration when pixels exist pixel-
streams permutation of 100×100 (g). Example of tree pixels streams given to the algorithm (h). Outputtopology after the
MDS algorithm (i). Output topology after rotation and mirror correction (j).Estimated topology applied to reconstruct the
test image after the three permutations (k,l,m).

6.1 Standard Camera

In this first experiment, and the next two, we use a
Nikon D5000 camera in video mode, selecting just a
central region of 100x100 pixels. Hence, in this case
we have the ground truth information that the sensor
is composed by square pixels forming a regular square
grid. The main purpose of the current experiment is
to show that the proposed topology reconstruction al-
gorithm correctly handles an arbitrarily sorted list of
pixel-streams.

In the first experiment the camera was pointed to a
bright circle on a dark background, following the sug-
gestion of [6]. The data acquisition was performed
at 24fps for about ten minutes (14784 frames), while
panning and tilting the camera. In this case no roll
motion was performed. An example of the images ac-
quired and used to obtain a calibration can be seen
in Fig. 3(f). Figure 3(h) shows three pixels streams,
one can note that the top and the bottom streams
are highly correlated thus geometrically close to each

other. Figures 3(i,j) show the estimated topology, ap-
proximately forming a regular square grid, close to
the ground truth. A test image, acquired in daylight
(Fig. 3(a)), was then used to illustrate more clearly
that the sequencing of the pixel-streams (see pixel
permutations in Figs. 3(b,c,d,e)) does not influence
the perceptual quality of the estimated topology and
image reconstruction (Figs. 3(k,l,m)). A calibration
image changed by a 100×100 permutation is shown
in Figs. 3(g). Note that the permuted calibration im-
ages (g) have the same information as (f). Figure 3(j)
shows that our method found the correct rotation of
the topology.

Despite having obtained the results in
Figs. 3(k,l,m) after different calibrations, and thus
subject to different random selections of landmark
pixels, the differences of the estimated topologies are
small. Using a 2D Procrustes, to register the three
reconstructed topologies with a square 1-pixel-steps
grid, resulted in inter-pixel (four nearest neighbors)
distance-error distribution with a standard deviation



of 0.566, 0.563 and 0.563 pixels, respectively.

6.2 Mirror Effect Correction

(a) (b) (c)

Figure 4: Mirror effect example. Test image (a). Topology
corrected with detecting the mirror effect (b). Image with
mirror effect corrected (c).

In the second experiment we gave to our algo-
rithm a mirrored topology, Figure 4 (b). If we had
no movement information it would be impossible to
know which of the topologies shown was the correct
one, however with motion information we can deter-
mine that the correct topology is in fact an mirror
of Fig. 4 (b). The correct topology can be seen in
Fig. 4(c).

6.3 Unconstrained Calibration Scenario

(a) Calibration
frame 1

(b) Calibration
frame 25

(c) Calibration
frame 13209

(d) Frame
13209

binarized

(e) Topology
found

(f) Frame
13209

reconstructed

Figure 5: Topology estimation applied to 17448 images ran-
dom images of the University campus

In the third experiment, the main purpose is to ex-
plore more general calibration scenarios, while keep-
ing the topology estimation and the reference frame

accurate. Hence we considered a garden and car
park scenario, Fig. 5(a,b,c), where the vegetation pro-
vides many edge directions. For this data set we
filmed about twelve minutes, at 24fps, having ac-
quired 17448 frames. In this case we do pan and tilt
motions, as well as roll and translation.

Figure 5(d) shows the a binary image used in the
calibration algorithm. Figure 5(e) shows the topology
reconstruction considering binary level pixel-streams.

Note that Fig. 5(e) is the direct result of the
Isomap, while Fig. 5(f) is the result after using Eq.2,
and thus show a detected and corrected mirror effect.
Fig. 5(a,b) are also example of the motion used, in
this case vertical movement, to determine the rota-
tion. Note that since this calibration was not done us-
ing the ideal scenario, according to [6], the topology
found was indeed not has good as in the previews ex-
periments, however our rotation and mirror algorithm
work perfectly.

6.4 Fiber Bundle Based Camera

The final experiment was conducted with a fiber bun-
dle of 2475 fibers. At one end of the fiber bundle
we show several images and record the data at the
other end of the fiber Fig.6 (a). As one can see some
of the typical images of the fiber bundle in Fig.6 (b)
(second row), the twisting of the fibers makes the im-
ages unreadable. When using the complete calibra-
tion methodology, with rotation and mirror correc-
tion, one can see easily what the camera is imaging, in
this case several letters, Fig.6 (b) (third row). In order
to assess qualitatively the accuracy of the topology
and the rotation found, we show a mosaic in figure 6
(b) (bottom). The mosaic was made from a set of 258
images, given the motion of the camera. In the origi-
nal images show to the camera one figure 6 (b) (top),
one can see that is written ”Panoramic Mosaics”. The
final result, figure 6 (b) (bottom), shows that our cali-
bration methodology works with irregular topologies
by building a mosaic. One can see the overall mosaic
is clear, meaning that we had a good rotation correc-
tion.

7 Conclusions

In this paper we consider cameras as collection
of raxels, each raxel represents a photosensor that ac-
quires a pixel-stream. We presented a topological cal-
ibration of the raxels consistent with the global co-
ordinates of a mobile platform. Knowing that a cal-
ibration algorithm that uses MDS or its MDS based



(a) Discrete camera. (b) Mosaic.

Figure 6: Discrete camera based in an optic fibers bundle ( 2k fibers). Calibration data, image of a laser pointer, i.e. a red
circular footprint distorted due to the twisting of the fibers (a). Topology correction and mosaicing of 258 images given the
camera odometry (b).

as an inherent problem, unknown rotation and possi-
ble mirror effect. We proposed to solve this problem,
assuming that the sensor is on top of a mobile robot.
Knowing the motion of the robot one can correct a
rotation and mirror ambiguity in the topology found.
The correction is done by analyzing the optical flow
of the sensor. We show that this method works in con-
ventional rectangular shaped sensors. It is also shown
that our method can work in irregular topologies, as it
was shown in the fiber bundle case.
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