REGRA DE ARMIJO

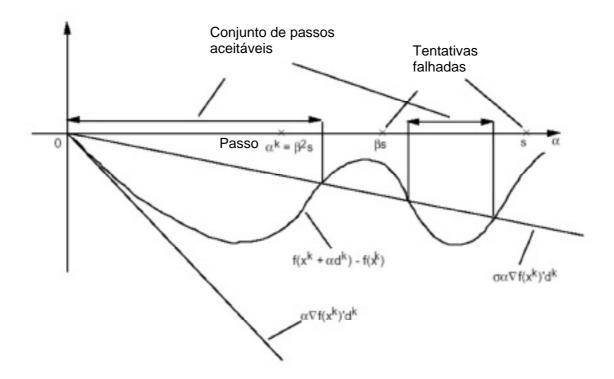
Existem várias regras para a selecção do passo α^k em métodos guiados pelo gradiente ou de procura em linha. Para evitar a frequentemente considerável computação envolvida nas regras de minimização em linha, é natural considerarem-se regras baseadas na redução sucessiva do passo. Na regra mais simples deste tipo escolhe-se um passo inicial de valor s, e se o vector correspondente $x^k + sd^k$ não conduzir a um valor de f menor, isto é se $f(x^k + sd^k)$ $f(x^k)$ o valor do passo é reduzido sucessivamente (através de um factor definido) até que o valor de f sofra uma melhoria (diminuição).

A regra de Armijo é essencialmente um método daquele tipo modificado adequadamente para garantir convergência. Assim escolhem-se os escalares fixos $s,\beta \in \sigma$, com $0 < \beta < 1$, e $0 < \sigma < 1$, e faz-se:

$$\alpha^k = \beta^{m_k} s$$

onde $m_{\scriptscriptstyle k}$ é o primeiro inteiro m não negativo para o qual se verifica:

$$f(x^{k}) - f(x^{k} + \beta^{m}sd^{k}) - \sigma\beta^{m}s f(x^{k}) d^{k}$$
 (1)



Por outras palavras, os passos $\beta^m s$, m=0,1,2,... são ensaiados sucessivamente até que a desigualdade (1) acima seja satisfeita para $m=m_k$. A melhoria no custo deve não só ser positiva mas suficientemente grande como em (1).

Na figura começamos com um passo s, e continuamos com βs , $\beta^2 s$,... até que pela primeira vez $\beta^m s$ cai dentro do intervalo de valores de α que satisfazem a desigualdade:

$$f(x^k) - f(x^k + \alpha d^k) - \sigma \alpha f(x^k) d^k$$