Optimização e Algoritmos (2004/2005)

Instituto Superior Técnico – Engenharia Electrotécnica e de Computadores

Série de Problemas 3 Regras de Armijo e Wolfe, Introdução às funções convexas

Problema 1. [Regras de Armijo e Wolfe] Considere o problema de optimização

$$\min_{t>0} \phi(t) \tag{1}$$

onde $\phi:[0,+\infty)\to\mathbb{R}$ é uma função de classe C^1 (ou seja, diferenciável e com derivada contínua). Aqui, assume-se que $\phi'(0) < 0$ (ou seja, ϕ é inicialmente decrescente). Este programa de optimização surge como subproblema nos algoritmos de optimização que operam por pesquisa em linhas. Nesse contexto, dado que o objectivo primordial é minimizar uma função objectivo f em \mathbb{R}^n (da qual ϕ é apenas uma fatia unidimensional), não se torna importante resolver exactamente o problema (1). É suficiente resolver (1) aproximadamente, ou seja, basta encontrar em $\mathbb{R}^+ = (0, +\infty)$ um ponto t que seja "aceitável". O critério de "aceitabilidade" depende da regra adoptada. Neste problema, introduzem-se 2 regras: a regra de Armijo e a regra de Wolfe. Ambas as regras estabelecem uma particão de \mathbb{R}^+ em 3 conjuntos disjuntos: $\mathcal{A}, \mathcal{D}, \mathcal{E}$. Esses conjuntos têm o seguinte significado: o conjunto \mathcal{A} é o conjunto dos pontos "aceitáveis"; \mathcal{D} é o conjunto dos pontos demasiado "à direita"; o conjunto \mathcal{E} é o conjunto dos pontos demasiado "à esquerda". (Atenção: esta terminologia não significa forçosamente que, por exemplo, todos os pontos em \mathcal{D} sejam estritamente maiores que os pontos em \mathcal{A} ; veja os exemplos adiante). Mais especificamente, temos

Armijo:
$$\mathcal{A} = \{ t > 0 : \phi(t) \le \phi(0) + \sigma \phi'(0)t \}$$

$$\mathcal{D} = \{ t > 0 : \phi(t) > \phi(0) + \sigma \phi'(0)t \}$$

$$\mathcal{E} = \emptyset$$
 (2)

Wolfe:
$$\mathcal{A} = \{ t > 0 : \phi(t) \le \phi(0) + \sigma \phi'(0)t \in \phi'(t) \ge \lambda \phi'(0) \}$$

$$\mathcal{D} = \{ t > 0 : \phi(t) > \phi(0) + \sigma \phi'(0)t \}$$

$$\mathcal{E} = \{ t > 0 : \phi(t) \le \phi(0) + \sigma \phi'(0)t \in \phi'(t) < \lambda \phi'(0) \}$$

$$(3)$$

As constantes σ e λ são escolhidas pelo utilizador, mas devem satisfazer $0 < \sigma < \lambda < 1$. (Note que, para a regra de Armijo, nunca existem pontos demasiado "à esquerda").

(a) [Regra de Armijo: exemplo 1] Considere a função

$$\phi(t) = 8t^5 - \frac{98}{3}t^4 + 42t^3 - \frac{95}{6}t^2 - 3t$$

cujo gráfico se apresenta na figura 1. Usando a regra de Armijo, determine (aproximadamente) os conjuntos \mathcal{A} , \mathcal{E} e \mathcal{D} e represente-os em \mathbb{R}^+ para (i)

 $\sigma = 0.4$ (ii) $\sigma = 0.6$ e (iii) $\sigma = 0.8$. Sugere-se a utilização do MATLAB

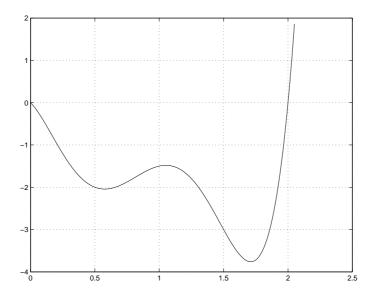


Figura 1: $\phi(t)$ [Problema 1(a)]

para uma determinação numérica mais precisa de $\mathcal{A}, \mathcal{D}, \mathcal{E}$. Em qualquer dos casos, é útil neste tipo de problemas começar por desenhar as rectas $\phi(0) + \sigma \phi'(0)t$ sobrepostas ao gráfico da função $\phi(t)$. A título de exemplo, exibe-se na figura 2 o caso referente a $\sigma = 0.4$.

(b) [Regra de Armijo: exemplo 2] Repita a alínea anterior para a função

$$\phi(t) = t^2 - 2t$$

cujo gráfico se apresenta na figura 3.

(c) [Regra de Wolfe: exemplo 1] Considere de novo a função

$$\phi(t) = 8t^5 - \frac{98}{3}t^4 + 42t^3 - \frac{95}{6}t^2 - 3t$$

cujo gráfico se apresenta na figura 1. Usando a regra de Wolfe, determine os conjuntos \mathcal{A} , \mathcal{E} e \mathcal{D} e represente-os em \mathbb{R}^+ para (i) $(\sigma, \lambda) = (0.4, 0.6)$ (ii) $(\sigma, \lambda) = (0.6, 0.8)$ e (iii) $(\sigma, \lambda) = (0.8, 0.9)$.

(d) [Regra de Wolfe: exemplo 2] Considere de novo a função

$$\phi(t) = t^2 - 2t$$

cujo gráfico se apresenta na figura 3. Usando a regra de Wolfe, determine os conjuntos \mathcal{A} , \mathcal{E} e \mathcal{D} e represente-os em \mathbb{R}^+ para (i) $(\sigma, \lambda) = (0.4, 0.6)$ (ii) $(\sigma, \lambda) = (0.6, 0.8)$ e (iii) $(\sigma, \lambda) = (0.8, 0.9)$.

Problema 2. [Regra de Armijo: propriedade básica] Considere a regra de Armijo descrita no problema 1 e uma função $\phi : [0, +\infty) \to \mathbb{R}$ de classe

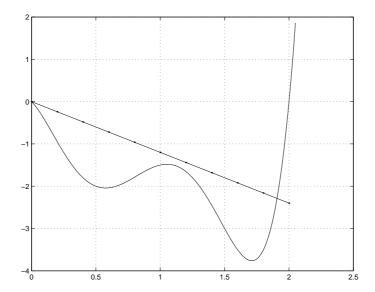


Figura 2: $\phi(t)$ e $\phi(0) + 0.4\phi'(0)t$ [Problema 1(a)]

 C^1 e com $\phi'(0) < 0$. Mostre que, para qualquer $d \in \mathcal{D}$, existe um ponto "aceitável" no intervalo (0,d). [**Pista:** note que $\phi'(0) < \sigma \phi'(0)$. Agora, dado que ϕ' é contínua, existe $t^* > 0$ tal que $\phi'(t) < \sigma \phi'(0)$ para todo o $t \in [0,t^*]$. Explorando a identidade

$$\phi(t^*) = \phi(0) + \int_0^{t^*} \phi'(t)dt$$

conclua que t^* é "aceitável"]

Problema 3.[Regra de Wolfe: propriedade básica] Considere a regra de Wolfe descrita no problema 1 e uma função $\phi:[0,+\infty)\to\mathbb{R}$ de classe C^1 e com $\phi'(0)<0$. O objectivo deste problema é mostrar que, para quaisquer $e\in\mathcal{E}$ e $d\in\mathcal{D}$ satisfazendo e< d, existe um ponto "aceitável" no intervalo (e,d).

(a) Defina o conjunto $S=(e,+\infty)\cap \mathcal{D}$ e seja $m=\inf S$. Mostre que m>e. [Pista: assuma que m=e. Então, mostre que é possível sintetizar uma sequência $t_k>e$, que converge para e e satisfaz

$$\frac{\phi(t_k) - \phi(e)}{t_k - e} \ge \sigma \phi'(0).$$

Tomando o limite $k \to +\infty$ na expressão acima, conclua que $\phi'(e) \ge \sigma \phi'(0)$ e que esta última desigualdade contradiz $e \in \mathcal{E}$.]

(b) Note que, pela alínea anterior, já sabemos que $\phi(t) \leq \phi(0) + \sigma \phi'(0)t$ para todo o $t \in (0, m)$. Agora, mostre que

$$\phi(m) \ge \phi(0) + \sigma \phi'(0)m.$$

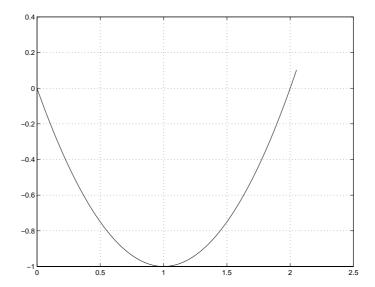


Figura 3: $\phi(t)$ [Problema 1(b)]

[**Pista:** considere uma sequência $t_k \in \mathcal{D}$ que converge para m.]

(c) Use o resultado da alínea anterior para mostrar a existência de um ponto $t^* \in (e, m) \subset (e, d)$ que satisfaz $\phi'(t^*) > \lambda \phi'(0)$. [Pista: aplique o teorema do valor intermédio à função ϕ no intervalo [e, m]. Recorde que este teorema garante a existência de um ponto $t^* \in (e, m)$ que satisfaz

$$\phi'(t^*) = \frac{\phi(m) - \phi(e)}{m - e}.$$

Mostre que a expressão acima implica $\phi'(t^*) \ge \sigma \phi'(0)$ e note que $0 < \sigma < \lambda < 1$.]

(d) Mostre que t^* é um ponto "aceitável".

Problema 4. [Localização de pontos aceitáveis: parte I] Considere o contexto do problema 1 que visa a resolução *aproximada* do problema de optimização

$$\min_{t>0} \, \phi(t)$$

onde $\phi:[0,+\infty)\to\mathbb{R}$ é uma função de classe C^1 com $\phi'(0)<0$. Mais precisamente, pretende-se localizar um ponto "aceitável" usando a regra de Armijo ou de Wolfe. Para localizar um ponto aceitável pode-se utilizar o algoritmo na tabela 1.

Comentários ao algoritmo da tabela 1:

• o algoritmo testa sucessivamente pontos até aprovar um (termina quando encontra um ponto "aceitável");

```
inicialização
                               escolher t_0 > 0
1.
2.
                                inicializar e=0, d=+\infty, k=0
3.
        ciclo
                                testar t_k:
                                    • se t_k \in \mathcal{A}: terminar
                                    • se t_k \in \mathcal{D}: d = t_k
5.
                                    • se t_k \in \mathcal{E}: e = t_k
7.
                                testar d:
                                    ullet se d=+\infty\colon escolher t_{k+1}>t_k
8.
                                    • se d < +\infty: escolher t_{k+1} \in (e,d)
9.
                                k \leftarrow k+1 e retornar ao ciclo
10.
```

Tabela 1: Algoritmo para localização de um ponto aceitável

- na linha 8 do algoritmo assuma (para simplificar) que se escolhe $t_{k+1} > t_k$ fazendo $t_{k+1} = \alpha t_k$ (onde $\alpha > 1$ é uma constante previamente escolhida);
- na linha 9 do algoritmo assuma (para simplificar) que se escolhe $t_{k+1} \in (e,d)$ fazendo $t_{k+1} = (e+d)/2$;
- as variáveis internas e e d definem um intervalo (e,d) que, à luz dos problemas 2 e 3, sabemos que contém um ponto "aceitável";
- cada modificação em d (linha 5), resulta na diminuição de d e cada modificação em e (linha 6), resulta no aumento de e;
- portanto, cada modificação em e ou d, "aperta" o intervalo (e, d);
- \bullet em cada iteração k, é executada apenas uma das linhas 4, 5 ou 6;
- ullet em cada iteração k, é executada apenas uma das linhas 8 ou 9.

O objectivo deste problema é provar que este algoritmo localiza um ponto aceitável num número finito de iterações, independentemente da regra (Armijo ou Wolfe) adoptada. Note que esta propriedade de terminação finita é crucial: no contexto dos algoritmos de optimização que operam por pesquisas em linha, este algoritmo de localização de pontos aceitáveis é invocado em cada iteração; se entrar em ciclo infinito, o algoritmo primário fica bloqueado.

Neste problema, assuma que ϕ é limitada inferiormente, ou seja, existe m tal que $\phi(t) \geq m$ para todo o $t \geq 0$.

- (a) Comece por provar que a linha 8 não pode ser executada infinitamente. [Pista: suponha que a linha 8 é executada infinitamente. Observe que, necessariamente, a linha 5 nunca é executada. Logo, os pontos t_k gerados pelo algoritmo são sempre considerados demasiado "à esquerda". Mostre então que t_k pertence a \mathcal{E} e verifica $t_k \to +\infty$. Conclua que $\phi(t_{m_k}) \to -\infty$, contradizendo assim o facto de ϕ ser limitada inferiormente.]
- (b) Pela alínea anterior, sabemos que a linha 8 deixa de ser executada pelo algoritmo após um número K de iterações. Isto implica que é a linha 9 que passa a ser executada em cada iteração k > K. Suponha que o algoritmo corre infinitamente. Seja e_k e d_k o valor de e e d ao final da iteração d. Mostre que d0 uma sucessão crescente, d0 é uma sucessão decrescente e ambas convergem para um mesmo ponto d1. [Pista: cada alteração em d2 ou d2 uma sucessão decrescente e ou d3 uma sucessão decrescente e ou d4 uma sucessão decrescente e ou d5 uma sucessão decrescente e ou d6 uma sucessão decrescente e ou d7 uma sucessão decrescente e ou d8 uma sucessão decrescente e ou d9 uma

$$\frac{\phi(d_k) - \phi(t^*)}{d_k - t^*} \ge \sigma \phi'(0)$$

e, passando ao limite, conclua que $\phi'(t^*) \geq \sigma \phi'(0) > \lambda \phi'(0)$. Por outro lado, observe que $\phi'(e_k) \leq \lambda \phi'(0)$ o que, passando ao limite, resulta $\phi'(t^*) \leq \lambda \phi'(0)$ e gera uma contradição.

Problema 5. [Localização de pontos aceitáveis: parte II] Considere o algoritmo descrito na tabela 1.

(a) [Regra de Armijo] Considere a função

$$\phi(t) = 8t^5 - \frac{98}{3}t^4 + 42t^3 - \frac{95}{6}t^2 - 3t$$

cujo gráfico se apresenta na figura 1. Faça uma implementação em MATLAB do algoritmo na tabela 1, para a regra de Armijo. **Nota:** não se pretende aqui que utilize os resultados obtidos no problema 1 para a função ϕ ; o seu programa em MATLAB deve testar cada ponto t_k usando as definições em (2).

Mostre a sequência de pontos t_k gerados pelo algoritmo quando usa (i) $\sigma = 0.4$ (ii) $\sigma = 0.6$ e (iii) $\sigma = 0.8$. Para qualquer dos casos, faça $t_0 = 1.5$ e $\alpha = 3$.

(b) [Regra de Wolfe] Para a mesma função ϕ da alínea anterior, faça uma implementação em MATLAB do algoritmo na tabela 1, utilizando agora a regra de Wolfe.

Mostre a sequência de pontos t_k gerados pelo algoritmo quando usa (i) $(\sigma, \lambda) = (0.4, 0.6)$ e $t_0 = 2$ (ii) $(\sigma, \lambda) = (0.4, 0.6)$ e $t_0 = 1.5$ (iii) $(\sigma, \lambda) = (0.4, 0.6)$

(0.6, 0.8) e $t_0 = 1.5$. Para qualquer dos casos, faça $\alpha = 3$.

Problema 6.[Conjuntos convexos: propriedades gerais] Um conjunto $S \in \mathbb{R}^n$ diz-se convexo se $(1 - \lambda)x_1 + \lambda x_2 \in S$ para quaisquer $x_1, x_2 \in S$ e $\lambda \in [0, 1]$. Ou seja, S é convexo se para quaisquer $x_1, x_2 \in S$ o segmento de recta que une x_1 a x_2 também pertence a S.

- (a) Mostre que a intersecção de conjuntos convexos é um conjunto convexo.
- (b) Prove ou exiba um contra-exemplo: a união de conjuntos convexos é um conjunto convexo.
- (c) Suponha que S é um conjunto convexo, limitado e aberto em \mathbb{R} . Mostre que S é um intervalo (a,b). [Pista: mostre que S=(m,M) onde $m=\inf S$ e $M=\sup S$]
 - (d) Mostre que $S \subset \mathbb{R}^n$ é convexo se e só se

$$\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_k x_k \in S,$$

para quaisquer $x_1, x_2, \ldots, x_k \in S$ e $\lambda_1, \lambda_2, \ldots, \lambda_k \geq 0, \lambda_1 + \lambda_2 + \cdots + \lambda_k = 1$. [**Pista**: para provar a necessidade da condição, use indução em k.]

Problema 7. [Conjuntos convexos elementares] Usando a definição, mostre que os seguintes conjuntos são convexos em \mathbb{R}^n :

(a) [Semi-espaço]

$$S = \left\{ x \in \mathbb{R}^n : a^T x \le b \right\},\,$$

onde $a \in \mathbb{R}^n \ (a \neq 0)$ e $b \in \mathbb{R}$

(b) [Hiperplano]

$$S = \left\{ x \in \mathbb{R}^n : a^T x = b \right\},\,$$

onde $a \in \mathbb{R}^n \ (a \neq 0)$ e $b \in \mathbb{R}$

(c) [Bola]

$$S = \{x \in \mathbb{R}^n : ||x - x_0|| < R\},\$$

onde $x_0 \in \mathbb{R}^n$ e R > 0

(d) [Cone]

$$S = \{a_1\mu_1 + a_2\mu_2 + \dots + a_k\mu_k : \mu_1, \mu_2, \dots, \mu_k \ge 0\} \subset \mathbb{R}^n,$$

onde $a_1, a_2, \ldots, a_k \in \mathbb{R}^n$. Esboçe o conjunto $S = \{a_1\mu_1 + a_2\mu_2 : \mu_1, \mu_2 \ge 0\}$ em \mathbb{R}^2 , onde $a_1 = (1, 1)$ e $a_2 = (0, 1)$.

Problema 8.[Conjuntos convexos] Usando a definição, mostre que os seguintes conjuntos são convexos em $\mathbb{R}^{n \times n}$:

(a) [Matrizes triangulares inferiores com diagonal positiva]

$$S = \{ X \in \mathbb{R}^{n \times n} : X_{ij} = 0, \text{ para } 1 \le i < j \le n, \text{ e } X_{ii} > 0 \text{ para } i = 1, \dots, n \}.$$

O símbolo X_{ij} representa a entrada na linha i, coluna j da matriz X.

(b) [Matrizes simétricas]

$$S = \left\{ X \in \mathbb{R}^{n \times n} : X = X^T \right\}$$

(c) [Matrizes definidas positivas]

$$S = \left\{ X \in \mathbb{R}^{n \times n} : X \succ 0 \right\}.$$

A notação $X \succ 0$ significa que X é simétrica e $y^T X y > 0$ para todo o $y \in \mathbb{R}^n, y \neq 0$.

(d) [Matrizes com entradas não-negativas e traço unitário]

$$S = \left\{ X \in \mathbb{R}^{n \times n} : X_{ij} \ge 0 \text{ e tr}(X) = 1 \right\}.$$

Problema 9.[Funções convexas: propriedades gerais] Seja $S \in \mathbb{R}^n$ um conjunto convexo. Uma função $f: S \to \mathbb{R}$ diz-se convexa se

$$f\left((1-\lambda)x_1 + \lambda x_2\right) \le (1-\lambda)f(x_1) + \lambda f(x_2),$$

para quaisquer $x_1, x_2 \in S$ e $\lambda \in [0, 1]$.

- (a) Seja $S \subset \mathbb{R}^n$ um conjunto convexo. Para $x_0 \in \mathbb{R}^n$ e $d \in \mathbb{R}^n$ defina-se o conjunto $I_{x_0,d} = \{t \in \mathbb{R} : x_0 + td \in S\}$. Mostre que $I_{x_0,d}$ é um conjunto convexo em \mathbb{R} .
- (b) Seja $S \subset \mathbb{R}^n$ um conjunto convexo e $f: S \to \mathbb{R}$. Mostre que f é convexa se e só se $\phi_{x_0,d}: I_{x_0,d} \to \mathbb{R}$,

$$\phi_{x_0,d}(t) = f(x_0 + td)$$

é uma função convexa (para qualquer $x_0 \in \mathbb{R}^n$ e $d \in \mathbb{R}^n$). [**Nota:** este resultado permite reduzir o teste de convexidade de funções em \mathbb{R}^n ao teste de convexidade de funções em \mathbb{R}]

(c) Seja $S \subset \mathbb{R}^n$ um conjunto convexo e $f: S \to \mathbb{R}$. Mostre que f é convexa se e só se

$$f(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_k x_k) \le \lambda_1 f(x_1) + \lambda_2 f(x_2) + \dots + \lambda_k f(x_k),$$

para quaisquer $x_1, x_2, \dots, x_k \in S$ e $\lambda_1, \lambda_2, \dots, \lambda_k \geq 0, \lambda_1 + \lambda_2 + \dots + \lambda_k = 1$.

- (d) Seja $S \subset \mathbb{R}^n$ um conjunto convexo e $f: S \to \mathbb{R}$. Mostre: se f é convexa, então $S_{\alpha} = \{x \in S: f(x) \leq \alpha\}$ é um conjunto convexo, para qualquer $\alpha \in \mathbb{R}$. O reverso é verdadeiro?
- (e) Seja $g:A\subset\mathbb{R}^n\to\mathbb{R}$ uma função definida num conjunto A. O epígrafo de g é o conjunto

$$\operatorname{epi}(g) = \left\{ (x,t) \in \mathbb{R}^{n+1} \, : \, x \in A, \, g(x) \leq t \right\}.$$

Seja $S \subset \mathbb{R}^n$ um conjunto convexo e $f: S \to \mathbb{R}$. Mostre que f é convexa se e só se epi(f) é um conjunto convexo em \mathbb{R}^{n+1} .

(f) Use a alínea anterior para determinar se as seguintes funções são convexas: (i) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin(x)$; (ii) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$; (iii) $f: \mathbb{R}^+ \to \mathbb{R}$, $f(x) = \log(x)$; (iv) $f: \mathbb{R}^+ \to \mathbb{R}$, $f(x) = e^x$.