UNIVERSIDADE TECNICA DE LISBOA
INSTITUTO SUPERIOR TECNICO

A MULTI-BODY FACTORIZATION METHOD
FOR MOTION ANALYSIS

JOAO PAULO SALGADO ARRISCADO COSTEIRA
(Mestre)

Tese para obtengao do grau de doutor em
Engenharia Electrotécnica e de Computadores

Lisboa, Maio de 1995



Tese realizada sob a orientacao de
Joao José dos Santos Sentieiro

Professor Catedratico do
Departamento de Engenharia Electrotécnica e de Computadores

INSTITUTO SUPERIOR TECNICO



A Ana Paula



ACKNOWLEDGEMENTS

I had the great and demanding experience of having two advisors. [ owe Professors
Takeo Kanade and Joao Sentieiro a great deal of patience, dedication and ultimately
friendship. From Prof. Kanade I learned the rare ability of searching for what is fun-
damental behind what looks like a good idea; and to pursuit with patience. From Prof.
Sentieiro I got the meaning and reward of a lifetime commitment to an ideal and to

people. My only possible tribute to them is to pass on their lessons to others.

To Martial Hebert for the fruitful discussions and suggestions. I wish we had deep-
ened further the cooperation. My fault!

To José Moura for listening and criticizing my ideas. His thoughtfulness and rigor

have been always a reference. His friendship will be missed.

To Maria Joao Rendas. I didn’t use clustering techniques but the orthogonal pro-

jectors were precious.

To José Bioucas the prompt answers and clever suggestions we exchanged over the

‘cyberspace’.

To Carnegie Mellon University and the Robotics Institute, for having me as a visit-
ing student for more than 3 years, and for making me feel at home. In Carnegie Mellon
I found the joy for knowledge, the pleasure of discovery and the work ethics which will

follow me for as long as I live.
To JNICT who partially funded my stay in Pittsburgh.

To IST to which I have a strong and emotional attachment for also partially funding

my stay.

Whatever I accomplished, I owe it to my friend Joao José. I owe him ten years
of friendship and dedication. He was also the one who ‘pushed’ me to CMU (I didn’t

want to leave Portugal!). I'll never be grateful enough for that.



Because a PhD is not only about science, and because life outside the office is as
important as inside, my deep gratitude to all the friends whose company was precious.
Among an endless count | wish to thank: Carlos Bispo, my undergraduate classmate,
my ‘chief cook’” in London, colleague in Lisbon, all-time-friend and babysitter in Pitts-
burgh. I guess this makes us inseparable. Margarida Jacome, my delightful and close
friend. As friend and as a peer she showed me the meaning of the words “high stan-
dards”. My dears Lynn, Mona, Maged and Robert with whom I shared my last tears in
Pittsburgh, Maria Joao and Richard in whose house Beatriz had her first ‘dinner out’,
and Raj Reddy, Ana Barroso, Joao Silva, Lino Santos and Manuela Veloso with whom 1
spent most of the time. Also, Radu and Takumi Jasinschi who became friends-at-first-
sight. Jim and Dorothy Rehg, whom I regret not having spent more time with. My
officemates Juan Leon, Amy Zaremsky and Aarti Gupta for their daily friendship. My
last four months in Pittsburgh were spent without my family. Instead of a predictably
painful period, it is unforgetable; I shared with Lynn the joy, the anger, the noise and
the silence that only a warm and great friend can give. Likewise, Antonio Alonso was
my companion of far too many hours of intellectual intimacy and care. They all made

my years in Pittsburgh one of the best and most intense periods of my life.

To Arabica I thank for making some of these friendships possible, and for the long
nights spent with coffee and the music of Madredeus, Zeca Afonso, Amalia Rodrigues,
Fausto and others. Also, by turning the café into a non-smoking place they gave me

the opportunity to enjoy the beautiful Pittsburgh weather!
To my inlaws Olimpia and Teoténio who absorbed most of the shock of my return.
Writing a thesis and handling an N-degree of freedom articulated one year old with

a 100dB built-in loudspeaker are not compatible tasks. They helped to make it possible.

To Ana Paula whom I don’t even dare to thank.



AGRADECIMENTOS

Passei pela gratificante e exigente experiéncia de ter tido dois orientadores. Aos Pro-
fessores Takeo Kanade e Joao Sentieiro expresso aqui a minha gratidao pela paciéncia e
dedicacao de que fui alvo, reveladoras de uma grande amizade. Em ciéncia, frequente-
mente, o importante é a pergunta. O Prof. Kanade ensinou-me o dificil processo da
descoberta daquilo que é fundamental numa pergunta e da procura paciente da re-
sposta. O Prof. Sentieiro mostrou-me que os sonhos tém nomes de pessoas e duram
uma vida.

Ao Martial Hebert pela disponibilidade e inimeras sugestoes. Lamento que a co-
laboragao nao tivesse sido, no entanto, mais profunda. Mea culpa.

Ao José Moura por ter tido a paciéncia e constante disponibilidade de me ouvir e
criticar. O seu talento e rigor sao, para mim, uma referéncia. Espero um dia poder,
novamente, disfrutar da sua amizade no dia-a-dia. Até la resta-me recorda-la.

A Maria Jodo Rendas. Afinal o problema nao era de “clustering” mas os operadores
de projeccao ortogonal eram a solugao.

Ao José Bioucas pela interacao, inteligéncia e prontidao das respostas. O cyber-
dialogo que mantivemos durante a minha estadia foi-me gratificante.

A Carnegie Mellon University, por me aceitar como estudante visitante por 3 anos e
pela sua hospitalidade. Ali aprendi o prazer do conhecimento, a alegria da descoberta,
e acima de tudo a ética de trabalho que, espero, me guie pela vida fora.

A JNICT pelo financimento parcial da minha estadia em Pittsburgh.

Ao Instituto Superior Técnico, instituicao que representa para mim muito mais do
que um local de trabalho e com a qual tenho uma forte ligaccao emocional, agradeco
também o financiamento parcial da minha estadia.

Quaisquer que tenham sido os meus conseguimentos, devo-os ao meu amigo Joao
José, companheiro de mais de dez anos de amizade e dedicacao. Além disso, a ele devo
o “empurrao” que me levou a CMU. Também por isso, ficar-lhe-ei eternamente grato.

Um doutoramento é uma experiéncia que vai muito para além da ciéncia e das
quatro paredes de um gabinete. O 6nus de gratidao para com os inumeros amigos que
me acompanharam neste capitulo importante da minha vida é enorme. Em particu-
lar, gostaria de agradecer ao Carlos Bispo, meu colega de licenciatura, “professor de
culinaria” em Londres, colega assistente em Lisboa e all-time-friend e babysitter em
Pittsburgh. Esta diaspora tornou-nos inseparaveis. A Margarida Jacome, o prazer da

profunda e intima amizade que a distancia apenas reforca. Ao meus queridos amigos



Lynn, Mona, Maged e Robert, com quem partilhei as minhas ultimas lagrimas em
Pittsburgh, a Maria Joao e Richard em cuja casa a Beatriz teve o seu primeiro ’jantar
fora’, juntamente com o Raj Reddy, a Ana Barroso, o Joao Silva, o Lino Santos, e
a Manuela Veloso, com os quais passei a maior parte do tempo. Ao Radu e Takumi
Jasinschi que foram amigos a primeira vista. Ao Jim e Dorothy Rehg de quem lamento
nao ter disfrutado mais da sua companhia. Aos meus companheiros de gabinete Juan
Leon, Amy Zaremsky e Aarti Gupta pela amizade diaria. Os meus ultimos quatro
meses em Pittsburgh foram passados sem a familia. Em vez da predizivel tortura foi
um periodo inesquecivel; Com a Lynn partilhei os momentos de alegria e tristeza, a
algazarra e o siléncio que apenas uma forte e carinhosa amizade consegue dar. Do
mesmo modo, o Anténio Alonso foi o meu companheiro de longas horas de intimidade
intelectual e carinho. Todos eles fizeram dos anos passados em Pittsburgh um dos mais
ricos e melhores periodos da minha vida.

Ao café Arabica por ter feito algumas destas amizades possiveis, e pela disponi-
bilidade do seu tocador de CD’s que nos deleitou em longas noites com a musica dos
Madredeus, Zeca Afonso, Amalia Rodrigues, Fausto e outros. Além disso, a sua furia
anti-fumadora proporcionou-me o prazer de disfrutar do maravilhoso e ameno clima de
Pittsburgh.

Aos meus sogros Olimpia e Teotonio, que absoveram grande parte do choque da
volta a casa. Acabar de escrever uma tese, e ao mesmo tempo lidar com um ’roboz-
inho’ altamente articulado e com um altifalante de 100dB sao tarefas normalmente
incompativeis, mas que eles ajudaram a tornar possivel.

A Ana Paula a quem nao me atrevo sequer agradecer.



Resumo
No campo da Visao por Computador, o problema da determinacao da estrutura tridi-
mensional do mundo em cenas dinamicas tem sido um dos mais extensivamente es-
tudados. Nao obstante, a vasta maioria do trabalho publicado assume que a cena é
composta por apenas um s6 objecto. O caso mais complexo e realista, de um nimero
arbitrario de objectos presentes na cena tem sido alvo de pouca atencao, nomeada-
mente, no que refere aos seus aspectos tedricos. Nesta tese propoe-se um novo método
que separa e determina a forma tridimensional dos objectos, partindo de uma sequéncia
de imagens captadas em cenas onde multiplos objectos se movem independentemente.
O método nao requer conhecimento prévio do nimero de objectos, e tao pouco depende
de nenhum processo local de agrupamento de pontos caracteristicos ao nivel da imagem.
Neste ambito, introduz-se uma entidade matematica, denominada matriz de interacg¢dao
de forma, que exibe interessantes propriedades de invariancia, nomeadamente relativa-
mente ao movimento dos objectos, a caracteristica da sua matriz de forma e a selccao
do sistema de eixos escolhidos para representar a mesma. Esta estrutura invariante
é calculavel a partir, apenas, da trajectéria na imagem dos pontos caracteristicos dos
objectos. A analise de cenas dinamicas com multiplos objectos em movimento assenta
na representacao decorrente da decomposicao em valores/vectores singulares da ma-
triz de observacoes, definida pelas coordenadas das trajectorias dos referidos pontos
caracteristicos. Na tese mostra-se, ainda, que em cenas com um tnico objecto, estas
estruturas algébricas contém informagao geométrica sobre a forma e o movimento do
referido objecto. O potencial do método é também ilustrado numa sequéncia de ex-
periéncias com diferentes graus de complexidade e nivel de ruido. Numa experiéncia
com dados sintetizados mostra-se que a matriz de interacgao de forma contém toda a in-
formacao necessaria a segmentacao de objectos transparentes e com forma degenerada
(rectas e planos). A robustez ao ruido é tambem tratada e ilustrada em experiéncias
realizadas com imagens reais. Finalmente, o problema deteccao da caracteristica da
matriz de observacoes é tratado através da integracao das medidas de incerteza do

processo de seguimento dos pontos caracteristicos.

Palavras Chave: Forma a partir do movimento, Invariantes,



Abstract

The structure-from-motion problem has been extensively studied in the field of
computer vision. Yet, the bulk of the existing work assumes that the scene contains
only a single moving object. The more realistic case where an unknown number of ob-
jects move in the scene has received little attention, especially regarding the theoretical
treatment. In the thesis we present a new method for separating and recovering the
motion and shape of multiple independently moving objects in a sequence of images.
The method does not require prior knowledge of the number of objects, nor is depen-
dent on any grouping of features into an object at the image level. For this purpose,
we introduce a mathematical construct of object shapes, called the shape interaction
matrix, which is invariant to both the object motions, shape rank, and selection of
coordinate systems. This invariant structure is computable solely from the observed
trajectories of image features without grouping them into individual objects. Once the
structure is computed, it allows for segmenting features into objects by the process of
transforming it into a canonical form, as well as recovering the shape and motion of
each object.

The multiple motion analysis presented in this thesis is supported on the singular
value/vector representation of the feature trajectories. We show that these linear alge-
braic structures convey important geometric information about the shape and motion
of the objects in single body scenes. The potential of the method is illustrated in a
set of three experiments of different degrees of scene complexity and level of noise.
In a synthetic experiment we show that the shape interaction matrix contains all the
information necessary to solve scenes with transparent objects, objects with degener-
ate shape (planes and lines). The robustness of the method, in noisy conditions, is
also shown in two experiments using real images. Finally, the rank detection problem
is addressed by integrating the feature tracking uncertainty into the rank detection
procedure.

Keywords: Shape from Motion, Motion Analysis, Invariants
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Chapter 1

Introduction

Since the early days of computers, the scientific community has been working to-
wards providing robots with sensing capabilities. Vision is the most promising and yet
the most challenging of the artificial senses. From images, biological systems collect
most of the information they need to manipulate, navigate and interact with the envi-
ronment, suggesting that visual sensors are fundamental to providing artificial systems
with perception capabilities.

Recovering the 3D structure of a dynamic scene from an image sequence is one
of the most extensively studied problems in Computer Vision. This is because not
only do objects and robots themselves move, but also motion provides important cues
about 3D geometry. While a large amount of literature exists about this structure-
from-motion problem, most previous theoretical work is based on the assumption that
only a single motion is present in the image sequence; either the environment is static
and the observer moves, or the observer is static and only one object in the scene is
moving. More difficult, less studied, and of more practical interest is the general case of
an unknown number of objects moving independently in the scene. If a set of features
has been identified and tracked in an image sequence, but the correspondence between
each feature and the respective object is not known, the question is whether the motion
and shape of the multiple objects contained in the image sequence can be segmented
and recovered.

Previous approaches to the structure-from-motion problem for multiple objects can



be grouped into two classes: image motion-based (2D) and three-dimensional (3D)
modeling. The image-motion based approach relies mostly on the spatio-temporal
properties of an image sequence. Regions corresponding to different velocity fields are
extracted using Fourier domain analysis [WA83, AB85] or scale-space and space-time
filters [BBHP90, BHK91, IBP94, JRS92]. These image-based methods have limited
applicability either because object motions are restricted to a certain type, such as
translation only, or because image-level properties, such as locality, need to be used for
segmentation without assuring consistent segmentation into 3D objects.

To overcome these limitations, models of the motion and the scene can be introduced
that provide more constraints. Representative constraints include rigidity of an object
[Ul183] and smoothness (or similarity) of motion [Sin93, NZ92, Adi85, BB91]. Then the
problem is reduced to segmenting image events, such as feature trajectories, into objects
so that the recovered motion and shape satisfy these constraints; that is, it becomes
a clustering problem with constraints derived from a physical model. Though sound
in theory, the practical difficulty lies in the cyclic dilemma: to check the constraints
it is necessary to segment features, and to perform this segmentation requires the
computation of the constraints. So, current methods tend to be of a “generate-and-
test” nature, or require prior knowledge of the number of objects (clusters). In [UlI83]
Ullman describes a computational scheme to recursively recover shape from the tracks
of image features. A model of the object’s shape is matched with the current position
of the features, and a new model that maximizes rigidity is computed, that is, the
updated shape is the rigid object that best fits the scene data. He suggests that this
scheme could be used to segment multibody scenes by local application of the rigidity
principle. Since a single rigid body model does not fit the data, collections of points
that could be explained by a rigid transformation would be searched and grouped into
an object. Although in a different context, this view of the problem is followed in
[BB91] and [Gea94] under the framework of the factorization method [TK90b], where

the role of rigidity is replaced by linear dependence between feature tracks. Since the



factorization produces a matrix that is related to shape, segmentation is obtained by
recursively clustering columns of feature trajectories into linearly dependent groups.
This thesis presents a new method for segmenting and recovering the motion and
shape of multiple independently moving objects, from a set of feature trajectories
tracked in a sequence of images. The method, at the image level, does not require any
grouping of features into an object or prior knowledge of the number of objects. It
directly computes shape information and allows segmentation into objects. This has
been made possible by introducing a liner-algebraic construct of object shapes, called
the shape interaction matriz. The entries in this matrix are invariant to individual
object motions and yet are computable only from tracked feature trajectories without
segmentation. Once the matrix is computed, transforming it into the canonical form
results in segmenting features as well as recovering the shape and motion of each
object. We have developed our theory by using the factorization method by Tomasi
and Kanade [TK90b] as a way to relate feature measurements to motion and shape
with an orthographic camera. It is, however, easily seen that the theory, and thus
the method, work under a broader projection model including scaled orthography and

paraperspective [PK93] up to an affine camera [KvD91].



1.1 Multiple Motion Segmentation: An Overview

Most contributions to the area of structure from motion rely on the assumption
that the essence of multiple motion analysis comes down to a classification procedure by
which image patterns, or image features, are grouped by velocity in “classes” of distinct
motions. The approaches used by researchers that have addressed this problem can
be grouped into two major classes: image motion-based (2D) approaches and three

dimensional (3D) modeling approaches.

1.1.1 Image-based Analysis

The first class of methods addresses the problem of multiple motion and trans-
parency, relying mostly on spatiotemporal representations of image sequences, and
uses Fourier domain analysis [WA83, AB85]. Here, the processing is done at the im-
age level and the strategy consists of grouping image regions into “classes” of image
velocity similarity (also known as optical flow).

In general, the spatiotemporal representation of an image sequence is a three-
variable function I(x,y,t). This representation has too many degrees of freedom to be
of any use in finding a unique solution for the optical flow. To overcome this difficulty,
some constraints are usually imposed on the allowable motions [HS81, Hil84, Hee88a].
Most of the proposed methodologies consider that the image motion is generated by
translating objects. This assumption constrains I(z,y,t) to be a function of the original

texture, by defining the image at instant ¢ as
]($7y7t) = ]0($0_‘th7y0_vyt)7 (11)

where [ is the first image of the sequence and (v, v,) is the velocity of the pixel at
position (zg,y0). Computing the Fourier transform of both sides of (1.1) yields the

relation (in the frequency domain):

Hwg,wy,w) = ]Ng(wx,wy) O(wr — Vg — Vywy) (1.2)



where [ represents the transform of I, 6() the Dirac’s impulse function and w,,w,,w;
the spatial and temporal frequencies respectively. Equation (1.2) reveals that image
sequences have all their energy distributed along the plane w; = v w, + vyw, in the
space-time frequency domain. The plane’s slope corresponds to the image velocity and
the spectrum in this plane is that of the first image.

In the case of more than one motion in the image, the total spectrum will be the
sum of as many planes as thre are different motions. To illustrate the procedure better,
assume that the image has one spatial dimension only. Then, instead of a plane, the
Fourier transform of the sequence will be constrained to a line in the spatiotemporal

frequency:

IrC,)l

Wy

Figure 1.1: Absolute value of the Fourier transform of an image sequence with two
objects moving. The spectrum lies along two lines correspondent to each of the motions

The Fourier transform consists of the sum of two functions taking values only along
the two lines w; = vy(y)ws. Since the spectrum of the moving pattern spreads over
different frequency regions, these can be separated by a selective filter. The selective
filtering is usually recursive. The fast motion is identified and eliminated from the

sequence, and then the procedure is repeated to the next fast motion until all pixels in



the image have been classified.

level 3

level 2

all velocities

level 1

Figure 1.2: Pyramid representation of one image. Going up in the pyramid eliminates
image motions.

This general approach is applied by [BBHP90] to segment two motions in the image
using three frames. The authors use to a multi-resolution pyramid [Ros84] to represent
the image signal and to compute image motion at each level. Forming a (Gaussian)
pyramid involves, at each resolution level, a spatial lowpass filtering of the image and
a subsampling.

Consider Figure 1.2 where a pyramid is shown with several image patterns moving
with different velocities. If two consecutive frames are subsampled, choosing for the
next resolution level every other pixel of the current resolution level, only displacements
larger than one pixel will be detected. This can be understood as a spatial lowpass and
temporal high-pass filtering that discards slow moving patterns. In terms of Fourier
representation, the pyramid is selecting the sequence spectrum in a zone equivalent to
the shaded area of Figure 1.3, which has high time (w;) and low space (w,) frequency
components. As we can see, there is only one signal with non-zero energy in this
region. The hierarchy can go as high as necessary to eliminate all the motions but one.

Therefore single motion techniques can be used. Once the pixels corresponding to the



e highpass
space lowpass

Figure 1.3: Selection of one motion in the Fourier domain. The fast motion has energy
in higher regions of the spectrum. With a linear filter, represented by the shaded area,
one motion can be selected

fast motion are detected this same procedure can be applied recursively to detect all
motions. Variants of this technique have been used in [BHK91] and [IBP94] with some
degree of success.

The importance of geometric image information was pointed out in [JRS92], where it
is shown that the geometric structure of the actual image texture (e. g. image contours)
plays an important role in the perception and classification of multiple motions. Taking
into account the curvature of contours it is possible to recover multiple motions from
just the normal component of the optical flow.

These methods have had some degree of success in the case of transparent scenes,
since they essentially measure the energy produced by the motion, however the draw-
backs are too severe. These are a consequence of both the assumption imposed on
motion, which is very restrictive, and the lack of criteria for separating between the
various resolution levels which actually define the motion “classes”. In real cases the

spectrum of an image sequence does not lie on a plane, even in trivial cases. Imagining



a textured sphere rotating, we realize that the pyramid will split velocity, components
of the same physical object along all resolution levels. Points in the occluding contour
have zero velocity whereas points in the mid region move fast. Using a classification of
the optical flow leads to a split of regions belonging to the same object, with completely
wrong results. Furthermore, if uncertainty is present in the measurements distinguish-
ing between the filtered motions can be very hard. In [Jas92] it is shown that in the
presence of error there are certain requirements for the spatial and temporal sampling
rates which may (in terms of uncertainty) exclude some levels of the pyramid.

One important contribution of space-time image based methods is to show the
possibility of recovering multiple motions with relatively simple mechanisms in low

level vision, when motion is essentially translational.

1.1.2 3D Modeling Approaches

To overcome the limitations of the image-based methods referred to above, the
relationship between the three-dimensional geometry of the scene and the image data
must be modeled. In other words, the image data (e.g. feature tracks) must be related
to, or parametrized by, the three-dimensional shape and/or motion coordinates.

Ever so, in scenes with multiple objects the number of possible combinations of
image points into physical objects is enormous. Just to emphasize this point, note
that one trivial solution can be found by considering each point of the image to be
itself a single moving object. Structure from motion literature traditionally uses the
rigidity of the scene as a geometric constraint to limit the possibilities, together with
clustering/classification techniques to group image points into objects. Considering
rigid objects, the 3D coordinates of one point in the object are motion invariant relative
to other points of that same object. Using this method, we can identify approaches
that compute the local shape of the object and then verify rigidity compliance, and
approaches that use the linear dependence of image feature tracks.

In order to emphasize the differences between the approach presented in this thesis

and thouse previouly proposed, let us consider a particular case. Figure 1.4 illustrates



a dynamic scene where two bodies move. A set of points is selected in the image and
the task consists of grouping them in such a way that each group contains points of a

single object. The data is the image position of these points over time. These features
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Figure 1.4: Multibody scene.

can be connected by a locality heuristic, that is, close features are more likely to be part
of the same object and therefore a close link between them is established. This locality
heuristic can be represented by a Delaunay triangulation, shown as a superimposed
graphic in Figure 1.4'. The features are located at the vertices of each triangle. Since
the triangulation links all the features, segmenting the scene is equivalent to grouping
features into clusters representing each one of the objects.

One of the most representative examples of the first kind of approaches is that of
Ullman [UlI83] who, in an early study, proposed a computational scheme for three-
dimensional shape recovery. Using feature tracks as input, his algorithm computes
shape by incremental updating of a 3D shape model defined a priori. Using the previous
example, Ullman’s idea comes down to a procedure that first computes the shape of

every triangle, assuming it contains only features of the same body. Repeating this

!The triangulation is used as an example. Any other equivalent criterion is also valid.



procedure for all triangles gives a local estimate of the 3D shape. Then, if features
belong to the same object, the 3D length of the triangle edges does not change over
time. In other words, the object being rigid, the length of the triangle edges is invariant
to rotations and translations. Then, recursively comparing neighboring triangles, the
same rigidity evaluation is performed, and, if possible, the correspondent features are
merged into a single cluster. The segmentation is obtained by recursively applying
the procedure to the newly formed clusters until no more merging is possible. This
methodology is an example of the “conviction” that multiple motion segmentation is
a clustering problem, thus solutions must be worked around locality criteria.

Besides the need to set up thresholds in advance, the fundamental drawback of
this approach is that in order to verify rigidity compliance, the shape must be com-
puted, while this shape is valid only if segmentation is performed beforehand. This
cyclic dilemma produces high complexity, and does not guarantee the uniqueness of
the solution.

Following the same concept, other approaches indirectly use the rigidity property,
by clustering the trajectories of feature points over a sequence of images. In this
context, rigidity is translated into linear dependence of the feature trajectories of the
same object. This is the general approach used by Boult and Brown [BB91], and Gear
[Gea94]. The authors address the segmentation problem using the factorization method
developed by Tomasi and Kanade [TK90b]. Unlike Ullman’s rigidity maximization
algorithm, the factorization method translates the idea of rigid interpretations into a
global constraint of the matrix formed by the tracks of moving image features. This
constraint is the rank 3 property of the measurements matrix, which, if decomposed
into its singular vectors, generates all possible subspaces where feature coordinates lie.

What Bould and Brown did was to use the singular value decomposition of the
measurements matrix to generate the whole space and then recursively cluster points
in a rank 3 subspace, assuming that the number of objects was known. Under the

same way, there are other algorithms which parametrize motion and carry out the
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clustering in the parameter space[Sin93]. Different motions produce clusters in the
parameter space which can be recovered using methods similar to the generalized Hough
transform.

In [NZ92] and [Adi85] the more complex perspective projection model is used but
the underlying methodology hinges on the same principle, that multiple body segmen-
tation is a classification problem, thus utilizing the same framework as those cited
above.

The drawbacks of these approaches are mainly threefold:

e First, to form clusters and to group points a distance between clusters has to be
defined. Most often this distance is based on heuristics, with no consideration of

the physics of the problem.

e Second, looking for clusters usually requires prior knowledge about the number
of objects. Looking for clusters without knowing how many they are could be
overwhelming, since combinations of points belonging to different objects gener-
ate cluster elements whose distance from a subspace is not defined. Furthermore,
degenerate cases pose severe problems under this framework since the clustering

has to be performed in subspaces with different dimensions.

e Finally there are the computational issues. Clustering means that decisions have
to be made based on few and local data. We need to measure distances between
sets of 3 points and decide whether they are “close” or not. With noisy data the

distance could, in many cases, be totally meaningless.
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1.2 Structure of the Thesis

This thesis addresses the problem of shape-from-motion recovery for scenes with multi-
ple moving objects. In Chapter 1 the problem is introduced and an overview of related
work in the area of multiple motion segmentation is presented. The original contri-
butions of this thesis are emphasized. Chapter 2 revisits the single object problem,
where a reformulation of the factorization method is presented. This method allows
for the shape and motion computation of a single moving object from an image stream.
This formulation is carried out in homogeneous coordinates, explicitly introducing the
object’s translational component in the motion equations.

Chapter 3 provides a geometrical interpretation of the factorization method. We
will deliver physical meaning to all matrices involved in the singular vector/value rep-
resentation of the shape from motion process.

The multibody problem is formally introduced in Chapter 4, and a mathemati-
cal construct called shape interaction matriz is defined. The first three sections of
this chapter explain the main difficulties of the problem, the limitations of previous
approaches, and the shape and motion invariance properties of the shape interaction
matrix. Under noise-free conditions this matrix delivers the solution without any extra
computation. In other words, each entry of the construct, by itself, indicates whether
two image points belong to the same object. The real situation with noisy measure-
ments is dealt with in the last section of the chapter, where a new iterative algorithm
is proposed.

In Chapter 5 a set of three experiments is described. These experiments were
planned in order to reveal various properties of the solution. In the first experiment
we consider a synthetic scene, and show the potential of our result when segmenting
a scene with three transparent objects. Experimental conditions are ideal in the sense
that an orthographic camera is modeled, even though noise is included. The second
experiment uses real images in a laboratory environment. The tracking is reliable and

the results show robustness in real conditions. The third experiment uses images from
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an outdoor scene with high levels of noise and unreliable tracking. The scene was
correctly recovered despite these severe conditions.

In summary, Chapters 1 to 5 contain the main theoretical body and experimental
results of this thesis, which were constructed based on some assumptions and pre-
processed data. Chapter 6 explains how the assumptions can be verified in practice
and also how the pre-processing is done. Specifically, we show how to compute rank
properties associated with our measurements and how to track features over time. In
the previous chapters these problems were assumed to be solved. In this chapter we
complete a 3D computational theory of shape and motion recovery (under orthography)
for multiple object scenes, using a sequence of raw images as input. Finally, in the last
chapter we draw some conclusions and propose possible future developments of this

work.

1.3 Original Contributions

Shape recovery from dynamic scenes is a fundamental process in reconstructing and
representing the 3D geometry of the world. The more general and complex case, where
several objects move, has allready been addressed by others though with some degree
of restrictions and prior knowledge.

We show that segmentation of multiple motions can be achieved in a global fashion
without any prior knowledge of the number of objects or their shapes. A mathematical
construct of shapes called the shape interaction matriz is introduced. This mathe-
matical construct reveals the global constraints of the problem and condenses all the
information necessary to segment the scene, without using any local property. It is
obtained directly from the image measurements, and it should be noted that among its
properties is motion and shape coordinate system invariance. We also develop an iter-
ative algorithm for noisy conditions, exploring the properties of the shape interaction
matrix.

For the single body shape recovery problem we provide a geometric meaning to
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algebraic entities which are related to the symmetry properties of objects and motion.
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Chapter 2

Shape From Motion in Single
Body Scenes: The Factorization

Method Revisited

The factorization method was originally introduced by Tomasi and Kanade [TK90b]
for the case of single object motion. The core of the method is a procedure based on
singular value decomposition that separates a matrix of measurements into the product
of two matrices which represent, respectively, the shape and motion of an object. The

method does not need any prior assumptions about either structure or motion.

2.1 A New Formulation Including Translation

The original Tomasi-Kanade formulation addressed the case of a moving camera ob-
serving a static scene. In this chapter we will reformulate the method in order to
consider the problem of a static camera observing a scene with a moving object. Also,
whereas the translation component of motion is eliminated in the original method, we
will retain that component in our formulation. Though equivalent for the single object
case, this new formulation helps to simplify some of the representations. Furthermore,
in multiple object scenes the translation component of motions cannot be computed di-
rectly from image data, so the original representation used in the factorization method

is not applicable.
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2.2 World and Observation Models

Let us assume for the moment that a static camera observes a single moving
object. To represent the situation we need two coordinate systems: a moving system
O attached to the object, and a static system C attached to the camera, as shown in

Figure 2.1.

Figure 2.1: The camera and the object with its coordinatee system. The (unit) vectors
2,7 define the image plane and k its normal.

Consider a point p; on the object. Let p%; denote the position of p;, at instant f,

represented in the camera coordinate system:

P} = Ry pi + ty. (2.1)
Here
iT
ky

. . . .T _ ‘. ’. ’. .T _ (- (- /- T _
is the rotation matrix whose rows 1y = [wa Ly sz] JJp = [sz Juy JZ] and ky = [sz kyf sz]

are the axes of the camera coordinate frame C expressed in the object’s frame. The
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vector
Loy
ty=| Ly, (2.3)
Lz
represents the position of the object’s coordinate frame, at instant f, in the camera

frame. The representation (2.1) can be simplified if we use homogeneous coordinates,
X
_|rp|_|Y :
s = l 1 ] =, (2.4)
1

for the object’s point. In the homogeneous coordinates, equation (2.1) can be expressed

as
c _|Pq| _ | Re ty|] pi .
= 7] = Lo 1] 2
_ | Ryt .
= l O 1 ] S; (2.6)

The camera is modeled here as an orthographic projection. It produces the image
by projecting a world point, parallel to the optical axis, onto the image plane. The

image of point p;, at time f, is then given by the first two elements of p§%;:

[f] :[
‘Ufi ]If ]yf ]Zf

The object moves relative to the camera which acquires the images. In the sequence

2
ty

s ] si. (2.7)

f

we track feature points from frame to frame. Suppose that we track N feature points

over F' frames, and that we collect all these measurements into a single matrix

Uyl Uiz uN
U1 U2 UFN :
W = (2.8)
V11 V12 V1IN
L VF1 Vp2 ... UFRN |

Each row of W lists the image coordinates u or v of all the feature points in each
frame, and each column represents the image trajectory of one feature over the whole

image sequence.

17



Using (2.7) we can represent W as the matrix product,

U11 U129 e UIN ‘lzl Zy1 ZZl twl
Sz, Szn
U1 U2 ... UFN . lep  lyp lzp t-TF Sy -+ Syy (2 9)
V11 V12 ... UIN Jer Jui Iz ly, Sz Sy
1 1
| VF1 UF2 ... UFN | L Jer Jur Jzp tyr |
If we denote
L-Tl lyl lZl t-Tl
7 ) 7 t
M = | ‘e et ler (2.10)
Jei Ju Ja ty
L Jzr Jyr Jzr lyp |
Sgy San
S . S
S = N YN (2.11)
Sz, Sin
1 1

as the motion and shape matrices respectively, we have the compact representation
W = MS. (2.12)

Compared with the original formulation in [TK90b], note that the motion matrix
contains translational components ¢,, and ¢,,. In the original formulation they were
eliminated from the bilinear equation corresponding to (2.9) by subtracting before-
hand the mean of the measurements. That procedure reflected the fact that under
orthography the translation components do not provide any information about shape.
In the case of a scene with multiple independent moving objects, the situation is not
the same: on one hand the translation component of each object cannot be computed
without segmentation, and on the other hand the translation component does provide
information for segmenting the multibody scene. For these reasons, the translation

component is kept in our formulation of the factorization method.
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2.3 Solution for Shape and Motion by Factoriza-
tion

We have derived the bilinear relationship (2.9) by modeling the imaging process.
The problem of recovering shape and motion is in obtaining a motion matrix M and
a shape matrix S, given the measurements matrix W. By simple inspection of (2.9)
we can see that since M and S can be at most rank 4, W will be at most rank 4.
However, in real situations W is constructed from noisy measurements, so the rank of
W can be higher due to noise in the feature tracking. To approximate W by a rank-4
matrix, singular value decomposition (SVD) is the most robust and the best rank-
revealing of all possible matrix decompositions [Ste92b]. With SVD, W is decomposed

and approximated as:
W = UxV7 (2.13)

where ¥ = diag(o1,02,03,04) is a diagonal matrix made of the four largest singular

R*Px4 - and

values, which reveal the most important components in the data, U €
V € RM** are respectively the left and right singular matrices, such that UTU =
VTV - I4X4-

By defining

M = UX:? (2.14)
S = »av7 (2.15)

we have the two matrices whose product can represent the bilinear system W. However,

this factorization is not unique, since for any invertible 4 x 4 matrix A, M = MA and

S = A~'S are also a possible solution because

A

MS = (MA) (A7'8) = MS=W. (2.16)

In other words, the singular value decomposition (2.13) provides a solution both for

shape and motion up to an affine transformation.
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The exact solution can be computed, using the fact that M must have certain

properties. Let us denote the 4 x 4 matrix A as the concatenation of two blocks,
A =[Agla]. (2.17)

The first block Ag is a 4 x 3 submatrix related to the rotational component and a; is

a 4 x 1 vector related to translation. Now, since
M = MA = [MAg[Ma,|, (2.18)

we can impose motion constraints, one on rotation and the other on translation, in

order to solve for A.

2.3.1 Rotation Constraints

Block Ar of A, which is related to rotational motion, is constrained by the or-
thonormality of axis vectors i:fr and ‘]}F, each of the 2F row entries of matrix MAp is a
unit norm vector and the first and second set of F' rows are pairwise orthogonal. This

yields a set of constraints

m;ApApm] = 1 (2.19)
th;jApALth] = 1 (2.20)
m;AgpAfm! = 0 (2.21)

fore =1...F,75 = F+1...2F, where m,,m; are rows ¢ and j of matrix M. This
is an overconstrained system which can be solved for the entries of ArA% by using
least squares techniques, and subsequently solving for Agr. See [TK90a] for a detailed

solution procedure.

2.3.2 Translation Constraints

In orthography, the projection of the 3D centroid of the features of an object into the
image plane is the centroid of the feature points. The X and Y position of the centroid

of the feature points is the average of each row of W:
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% 2oUii

w = : (2.22)
%E‘UF,Z'
= Ms = [MAg|Ma,] lﬂ : (2.23)
where
1
p=—>Sp: 2.24
P NZP (2.24)

is the centroid of the object.

The origin of the object’s coordinate system is arbitrary, so we make it coincide
with the centroid of the object, yelding p = 0. Then it follows immediately from (2.23)
that

W = Ma,. (2.25)

This expression is also an overconstrained system of equations, which can be solved for

the entries of a; in the least square sense. The best estimate will be given by
a = (M'™M)"'M'w (2.26)
= » VUt (2.27)

which completes the computation of all the elements of matrix A.

2.4 Summary of Algorithm

Shape and motion using the factorization method can then be computed by imple-

menting the following steps:
1. Build matrix W from the tracks of N features.
2. Using SVD, decompose the measurements matrix into W = UXV7T,
3. Compute A by imposing the rotational and translational constraints.

4. Define shape and motion as S = A~'2Y2VT and M = UX'/?A.
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5. Align the camera and object reference systems such that il = [1 0 0] and jT =

[010]

2.5 Experiments

In this section we present a single experiment to highlight the performance and robust-
ness of the algorithm. The observed scene is a moving golf ball, where 120 features

were selected and tracked over 72 frames.

Figure 2.2: The first image of the sequence

Figure 2.2 shows the first image of the sequence, and figure 2.3 shows the last image
with the trajectories of the selected features superimposed. Feature selection is done
by using statistical parameters of all image points, and choosing the most “trackable”.
In Chapter 6 we will describe the tracking process and so details on how the features
are tracked are omitted. Figure 2.4 shows a 3D plot of the recovered shape of the ball.
Notice the correct spherical curvature of the plots. To convey a better perception of
the recovered shape we show in Figure 2.5 a surface computed by bilinear interpolation
of the 3D shape points, and with the original image texture mapped on it. Again, note

the correctness of the outline contour of the surface.
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Figure 2.3: Tracked features over the whole sequence
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Figure 2.4: Recovered shape of the golf ball
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Figure 2.5: The shape with the texture of the original image mapped in the interpolated
3D recovered shape
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Chapter 3

Geometrical Interpretation of
Shape and Motion Decomposition

The factorization procedure developed in the previous section can be summarized as
follows. Given the measurements matrix W, compute its singular value decomposition
(2.13)

W = UxVv7’ (3.1)

This decomposition allows the recovery of the shape and motion, M and S, up to an
affine transform. Then, by using the constraints (2.19)-(2.21) and (2.27), we compute

A and obtain a unique solution for motion and shape, being:

W = MS (3.2)
S = A'S=A"'%:VT (3.3)
M = MA = UX?A. (3.4)

So far, all the matrix operations involved in the factorization have been considered
from a purely numerical and algebraic point of view. It is useful to give a geometric
interpretation to these matrices. Let us first consider the right singular matrix V7.

From equation (3.3) we see that
VT = %34S, (3.5)

This equation reveals that V7 is a linear transformation of the shape. This transforma-

tion, produced by A and ¥, is done in such a way that the resultant V is orthonormal.
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To understand how A and X are related to shape, first we need to introduce a few

geometric concepts. Let § be, as before, the centroid of the object;

> Xn
LYy _|p .
AR -
N

The centroid is the first-order moment of a set of points. The second order moments
of a set of points are given in homogeneous coordinates by
A = SSs7 (3.7)

Y Xp  LXY. XX.Z, X,
XY, YYD YNYaZ, Y.

S XoZo S Yl SZE S 7 (3.8)
o
- N[ﬁ}’ ﬁ’] (3.9)

Generally speaking, the matrix A represents the orientation of the point distribution.
Submatrix Ag is the matrix of the moments of inertia of the object. Its eigenvectors
represent the directions of the three axes of symmetry of the ellipsoid of inertia. Using

equation (3.3) for the shape representation, the matrix A can be written as

A

(A1uiv?) (VErATT) (3.10)
= A'ZATT (3.11)

Similarly, we can also introduce the moments of motion. Vectors iy and js of the
motion matrix represent the X and Y axes of the camera in object coordinates. As the

object moves, these vectors describe trajectories in the unit sphere. The second order

moments of motion vectors can be defined as:

Q = M'M (3.12)
D3, 43 Dlagivg +aagiyg) D Gagpizp +depizg) Y imptay +iagty))
=22 PO or =17 optop gty
— E(llrfllyf +].rf]yf) E(l.yf ‘+]yf) E(z,gf1Zf.2+ ]yf]zf) E(Z.yftrf +]yftyf) (313)
E(Usflzf +impizg) E(nylzf +iypizg) Z(zzf+lzf) E(ﬂz]ctrf tizptyg)
E(izftxf +J.rftyf) Z(lyft.rf +Jyftyf:) E(izft.rf +J2ftyf:) E(tif-i-t%f)
Q t
=2F l {%TO T (3.14)
b
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where €2 is the matrix of the “moments of inertia” of the image plane motion axes,
t is the average position of the camera origin in the object’s coordinate system and
|| t |I3; the average of the translation vector norm.

Using (3.4) we can write (3.12) as:
Q=ATZA. (3.15)

The bilinearity of the observations is also reflected in the second-order motion moments.

By multiplying the motion moment (3.15) by the shape moment (3.11), we have
QA = ATS?AT, (3.16)

or

QA AT = AT X2 (3.17)

This is a standard form of a 4 x 4 eigensystem, where X? is the matrix of the eigen-
values and AT the matrix of the eigenvectors. The squares of the singular values o2
of the measurements matrix W are the eigenvalues of the product of the motion and
shape moment matrices, and their eigenvectors form the rows of the transformation
matrix A. Geometrically, the eigenvectors represent space orientation, resulting from
projecting the symmetry axes of motion into the symmetry axes of shape. The eigen-
values (thus singular values of W) represent object’s “lengths” multiplied by motion
moments.

In order to illustrate the meaning of these matrices, let us consider one simple case
where we choose a particular set of coordinate axis and a particular type of motion.
Since the object coordinate system is arbitrary, we choose the object’s centroid and
axis of inertia to set up the origin and orientation of its coordinate system. Then, in
object coordinates p = 0, and the translational component t = W can be computed and
eliminated from W. On the other hand, since the object’s reference frame coincides

with its axis of symmetry, the matrix Ag is diagonal. Then, the eigensystem (3.17) is
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reduced to the 3 x 3 eigensystem

A 00
ATE2=Q¢| 0 X, 0 | AT, (3.18)
0 0 XA
where
Moo= DX (3.19)
Ay = Y Y? (3.20)
s = > 7} (3.21)

represent the moments of inertia of the object sorted in decreasing order.

Regarding motion, we specify that the object undergoes a symmetrical motion as
shown in Figure 3.1. It rotates up and down along the Y’Z’ plane (of the camera), fol-
lowed by an orthogonal motion to the left and right along the X’'Z’ plane. Furthermore,

Figure 3.1: Symmetrical motion

the motion is such that the amplitude of the upward (leftward) and downward (right-
ward) motion is the same, that is, the maximum and minimum angles of the trajectory

are equal. Under these restrictions the matrix of the moments of inertia of the motion
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is also diagonal:

Wi 0 O
Qo = 0 wy 0 (3.22)
0 0 ws3
where
I3
w = Fl—I-ZCOSZ(QZ‘) (3.23)
=1
I3
wy = F2+Zc082(¢,-) (3.24)
=1

I I3
w3 = Z:SiHQ(qﬁ,')—}—Z:sin{‘)(H,') (3.25)

are the moments of inertia of the motion and F; and F, are the number of frames
captured in each section of the motion.

The eigensystem (3.18) will be given by

wl)\l 0 0
AT = 0 wry, 0 [AT (3.26)
0 0 (.UQ)\Q

Equation (3.26) shows more explicitly the previously deduced properties of structure
from motion recovery with an orthographic camera. Under “symmetric” motion AT =

Is,3 and we will have:

- The columns of the singular matrix V represent the 3D shape of the object expressed
in coordinates of its axis of symmetry and scaled so that its moments are unitary.
As long as motion remains “symmetric”, matrix V does not depend on the actual

motion.

- The squares of the singular values of the track matrix are the moments of inertia
of the object multiplied by a scale factor. If the amplitude of the motion is the
same along both axes, there is one motion for which w; = wy = w3 and then the
singular values of W will be the moments of inertia of the object, up to a single

scale factor.
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Chapter 4

The Multi-body Factorization
Method

Until now we have assumed that the scene contains a single moving object. If there
is more than one moving object, the measurements matrix W will contain features
(columns) which are produced by different motions. One may think that solving the
problem requires first sorting the columns of the measurements matrix W into subma-
trices, each of which contains features from one object only, so that the factorization
technique of the previous sections can be applied individually. In fact this is exactly the
approach taken by [BB91] and [Gea94]. We will show in this section that the multibody
problem can be solved without prior segmentation. For the sake of simplicity we will
present the theory and the method for the two body case, but it will be clear that the

method is applicable to the general case of an arbitrary unknown number of bodies.

4.1 The Multi-body Motion Recovery Problem:
Its Difficulty

Suppose we have a scene in which two objects are moving and we take an image
sequence of F' frames. In this case, the relevant coordinate systems are depicted in
figure 4.1. Suppose also that the set of features that we have observed and tracked in
the image sequence actually consists of N; feature points from object 1 and N, from

object 2. For the moment, imagine that somehow we knew the classification of features
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Figure 4.1: Two bodies: The coordinate systems

and thus could permute the columns of W in such a way that the first N; columns
belong to object 1 and the following N, columns to object 2. Matrix W would have

the canonical form:
Each measurements submatrix can be factorized as

W, = UxVv/ (4.2)

= MS; = (MJA))(A;'S) (4.3)

with [ = 1 and 2 for object 1 and 2 respectively. Equation (4.1) has now the canonical

factorization:
W = [M1|MQ][S(’)1 302] (4.4)
Sl I AT S

By denoting
M* = [N || (4.6)
=
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. [Ay 0
A= AQ] (4.8)

* -21 0
¥ o= K 22] (4.10)

o [ VE oo
v = o vr | (4.11)

we obtain a factorization similar to a single object case, where the canonical measure-

ments matrix relates to shape and motion according to:

W* = M'S* (1.12)
S* = ATI§ = AImevT (4.13)
M* = M'A*=U"S"7A" (1.14)

From equation (4.4), we see that W* (and therefore W) will have at most rank
8; Wy and W3 are at most rank 4. For the remainder of this section let us consider
non-degenerate cases where the rank of W is in fact equal to 8; that is, the object shape
is actually full three-dimensional (excluding planes and lines) and the motion vectors
span a three dimensional space for both objects. Degenerate cases will be discussed
later on.

In reality, we do not know which features belong to which object, and thus the order
of columns of the given measurements matrix W is a mixture of features from objects
1 and 2. We can still apply singular value decomposition (SVD) to the measurements
matrix, and obtain

W =UxVv% (4.15)
Then it appears that the remaining task is to find the linear transformation A such
that shape and motion will have the block structure of equations (4.13) and (4.14).

There is, however, a fundamental difficulty in doing this. The metric (rotation
and translation) constraints (eq.(2.19)-(2.20) and (2.25)-(2.27)) were obtained in sec-
tion 2.3 by considering the motion matrix for one object, that is, by assuming that

the measurements matrix consists of features from a single object. These constraints
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are therefore only applicable when the segmentation is known. This is exactly the
mathematical evidence of the cyclic dilemma mentioned earlier.

Faced with this difficulty, the usual approach would be to group features bit by
bit so that we segment W into two rank-4 matrices and obtain the factorization as
in equation (4.4). For example, a simplistic procedure would be as follows: pick the
first four columns of W and span a rank-4 subspace. If the fifth column belongs to
the subspace (ie. is linear dependent on the first four, or almost linear dependent in
the case of noisy measurements), then classify it as belonging to the same object as
the first four columns and update the subspace representation. Otherwise, it belongs
to a new object. Apply this procedure recursively to all the remaining columns. This
approach is in fact essentially that used by [BB91] and [Gea94] to split matrix W, and
similar to that suggested by Ullman [UlI83], where the criterion for merging was local
rigidity.

However, this cluster-and-test approach presents several disadvantages. First, there
is no guarantee that the first four columns, which always form a rank-4 subspace, are
generated by the same object. Second, if we use a sequential procedure like that above
or a variation on it, the final result is dependent on where we start the procedure,
and alternatively, the search for the globally optimal segmentation will most likely be
computationally very expensive. Finally, prior knowledge of the number of objects
becomes very critical, since depending on the decision criterion of subspace inclusion,

the final number of objects may vary arbitrarily.!

4.2 A Mathematical Construct of Shapes Invari-
ant to Motions

In the multi-body structure-from-motion problem, the main difficulty, revealed just

above, is due to the fact that shape and motion interact. Mathematically, as shown

!'While this is beyond the scope of the assumption in this section, this cluster-and-test approach
also requires the prior knowledge of the ranks of objects, since for example a rank-8 measurements
matrix might have been generated by two line (rank-2) objects and one full 3D (rank 4) object instead
of two full 3D objects, and hence attempting to find two rank-4 subspaces could be wrong.
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in (4.4), the rank-8 measurement space is originally generated by the two subspaces of
rank 4, each represented by the block-diagonal shape matrix S*. However, the recovered
shape space VT, obtained by the singular value decomposition, is in general a linear
combination of the two subspaces and does not exhibit a block-diagonal structure.
There is however a mathematical construct that preserves the original subspace

structure. Let us define Q as the (N + N3) x (N; + N3) square matrix
Q=Vve (4.16)

We will call this matrix the shape interaction matriz. Mathematically, it is the orthogo-
nal operator that projects N = (N; + N3) dimensional vectors to the subspace spanned
by the columns of V. This matrix Q has several interesting and useful properties.
First, by definition it is uniquely computable only from the measurements W, since V
is uniquely obtained by the singular value decomposition of W.

Secondly, each element of Q provides important information about whether a pair
of features belong to the same object. Since W* is formed applying a set of column
permutations to W, V*T will also result by permuting the same set of columns of V72,
Thus, the canonical Q* will result by permuting columns and rows of Q (the order of
each operation is irrelevant) so that both matrices have the same entry values but in
different locations. Then, let us compute Q* for the canonical form of W*. By inserting

(4.13) into the canonical version of (4.16) we can obtain the following derivation:

Q = vv? (4.17)
= STA TS A* S (4.18)
— S*T(A*—lx*—lA*—T)—ls* (419)

_ S*T [(A*_l2*_I/QV*T)(V*E*_I/QA*_T)] ! S* = S*T(S*S*T)_ls* (420)

2V and V* may still differ up to an orthonormal transformation, but this is irrelevant to our
derivations.
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_ :SlT 0 HAl—l 0 Hsl 0] (4.21)

0 SzT 0 Ag_l 0 S»
[ S1TATISy 0 o
= - 0 ST Ay"1S, | (4.22)

where A7 and Ag are the 4 x 4 matrices of the moments of inertia of each object. This
means that the canonical Q* matrix for the sorted W* has a well-defined block-diagonal

structure. Also, each entry has the value

S{,Al_lsl] if feature trajectory ¢ and j belong to object 1
Qr = s;Az_lsz] if feature trajectory ¢ and j belong to object 2 (4.23)

0 if feature trajectory ¢ and j belong to different objects.

Properties of Q*
Invariant to the Number of Objects

Even though expression (4.22) was derived for the case of two objects, it is now clear
that its structure is the same for any number of objects. In fact, if the scene has M

moving objects Q* would still have the block diagonal form:

[ S1TA17'ST 0 0 0 0 1
Q = 0 0 SElA'S, 0 0 (4.24)
I 0 0 0 0 Sm Am 'Sm |

If any features ¢ and j belong to different objects their entry ()7; will be zero. This
property also holds in Q, that is, regardless the way features are sorted in W, the
shape interaction matrix contains all the necessary information about the multibody

scene.

35



Invariant to Object Motion

Most importantly, entries ()}; are invariant to motion. This is true since equations
(4.23) include only shape variable Si, and not M. In other words, no matter how the

objects move, they will produce the same set of entries in matrix Q.

Invariant to Coordinate System

The shape interaction matrix is invariant to the coordinate system in which we rep-
resent the shape. Suppose we transform the shape, S, of object k& by the general
transformation T € R***:

S'=TS. (4.25)
The corresponding block-diagonal element matrix will be
S7(s's™)7!s" = (TS)" [(TS)(TS)"] T (TS) = ST(SST)IS  (4.26)

which remains the same.

Invariant to Shape Rank

Finally, the shape interaction matrix is also invariant to the type of object. The rank of
the shape matrix S can be 2 for a line, 3 for a plane and 4 for a full 3D object. However,
the entries of Q* will have the same general expression. For degenerate shapes (lines
and planes), the difference will be the number of rows and columns of matrices S and
A. Since Q is invariant to the coordinate system, if object k is a line, Sy can be
represented as a 2 X N matrix (3 x Ny for a plane), therefore Ay will be 2 x 2 (3 x 3
for a plane). In both cases, the total rank of Q* changes but not its structure nor its

entries.

4.3 Sorting Matrix Q into Canonical Form

In the previous section we have shown that we can compute matrix Q without

knowing the segmentation of the features. Each element ();; can be interpreted as a
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measure of the interaction between features ¢ and j: if its value is non-zero, then the
features belong to the same object, otherwise they belong to different objects if the
value is zero. Also, if the features are sorted correctly into the canonical form of the
measurement matrix W*, then the corresponding canonical shape interaction matrix
Q" must be block diagonal.

Now, the problem of segmenting and recovering motion of multiple objects has
been reduced to that of sorting the entries of matrix Q, by swapping pairs of rows
and columns until it becomes block diagonal. Once this is achieved, applying the
corresponding permutations to the columns of W will transform it to the canonical form
where features from one object are grouped into adjacent columns. This equivalence
between sorting Q and permuting W is illustrated in figure 4.2.

With noisy measurements, a pair of features from different objects may exhibit
a small non-zero entry. We can regard ij as representing the energy of the shape
interaction between features ¢ and j. Then, the block diagonalization of Q can be
achieved by minimizing the total energy of all possible off-diagonal blocks over all sets
of permutations of rows and columns of Q. This is a computationally overwhelming
task since the number of possibilities is factorial with the number of features.

Alternatively, since matrix {ij} is symmetric and all elements are positive, it
defines the incidence matrix of a graph of Ny + Ny nodes, where the ij indicates the
weight of the link (¢, 7). Several graph-theoretical algorithms [CLR86], such as the
minimum spanning tree (MST), can be used to achieve block diagonalization much
more efficiently than energy minimization.

The importance of these methods lie in the interesting interpretation of the shape
interaction matrix (or the square of its elements). In noise-free environments Q is in fact
a forest: a graph made of several non-connected subgraphs, and segmentation reduces
to looking for the connected components. In the presence of noise Q is interpreted as a
single fully connected graph from which the noisy links have to be removed. We can use

the MST to achieve a minimum representation of Q where the noisy links can be easily
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removed. However, a single spike of noise can be understood by the sorting algorithm
as a link, jeopardizing the entire segmentation. Because of this, and also because of
the difficulty of coding prior knowledge in the MST algorithm we have devised another
algorithm that explores the global constraints on Q, allowing a much more efficient

and robust sorting.

4.4 Segmentation Algorithm

The algorithm we propose here segments a multibody scene in two steps: In the first
step rows and columns of Q are iteratively permuted in such a way that features of
the same object are arranged adjacently into blocks, transforming Q into the canonical
shape interaction matrix Q*. Though sorted, Q* alone does not provide information
about the size and location of each block, therefore a second step is required to compute

the rows/columns that limit the blocks corresponding to features of a single object.
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Figure 4.3: The segmentation algorithm: Sorting matrix Q and detecting the blocks

Consider an example where three objects move independently. Figure 4.3 depicts
the two steps of the algorithm graphically. First, the sorting process transforms the
original Q into Q*. Then the detection process determines columns ¢; and ¢; which
isolate the blocks corresponding to each object. This detection process is quite relevant
mainly for two reasons: on one hand the off-diagonal elements are non-zero and we have
no prior knowledge about either the signal or the noise models, hence we are unable
to detect the limiting columns based on local information alone. In other words, we
cannot compute optimal thresholds to classity the elements of Q as either noise or signal
[VT68]. Also, the detection process must take into consideration shape degeneracy
issues, that is, cases where objects have less than 3 independent dimensions (lines
and planes). Fortunately, using the properties of Q, the block diagonal structure is

invariant with shape rank therefore we have been able to develop a detection algorithm
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that robustly handles any shape degeneracy.

4.4.1 Sorting

As already stated, sorting Q is equivalent to minimizing the energy of the off-diagonal
blocks, over the set of all permutations of rows and columns. A straightforward inspec-
tion shows that this type of optimization leads to a combinatorial explosion. Instead,
we can considerably reduce the search effort by using suboptimal strategies without
jeopardizing performance.

Our algorithm implements a hill-climbing tree search. By hill-climbing we mean a
search procedure that, at each search level (or iteration), chooses the best path without
taking into account past decisions.

At each iteration, say k, the current state is represented by a k x k submatrix Q**
which contains the features sorted so far. A set of operations expands the current state,

producing candidates (features) to be included in the current sorted Q**. Figure 4.4

Possible column

Current permutations
sorting (candidates)
\ k+1 / N
c -
(2k+ 1 == n cost

Next |
sorting

\\\ %ﬁ

Figure 4.4: Sorting Algorithm: At iteration k, columns k£ + 1 to N are permuted and
the column with the highest norm is selected to form Q**+1
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shows iteration k where feature k+1 is to be selected from among the N —k candidates.
The candidates are features k£ 4+ 1 to N whose columns and rows are not included in
the current segmentation. The cost, C]k of each candidate is given by the energy of the

first k& elements
k
C]’? = ZQ?J for (j=k+1,---,N), (4.27)
=1

which represents the total energy of interaction between each of the candidate features

and the set of already sorted features®

. By maximizing the cost function C]’?, our
search strategy selects the feature whose global energy of interaction with the current
segmentation, is the largest.

The updated state Q***! is obtained by augmenting ** with the column and the
row of the best feature. The column corresponding to this feature is first permuted
with column k& + 1, followed by a permutation of rows with the same indices. Matrix
(Q#**1) is then formed with the first (k4 1) x (k + 1) elements of the permuted shape
interaction matrix. As a result of this maximization strategy, submatrix Q***! has
maximal energy among all possible (k4 1) x (k+ 1) submatrices of Q. Unless the noise
energy is similar to that of the signal, for all features in a set, this sorting procedure
groups features by the strength of their coupling. Even though this procedure may
look like a blind search, in the next section we will show that this maximization relates

the energy maximization to rank properties of operators Q**, thus taking into account

the structure of the problem.

4.4.2 Block Detection

Having sorted matrix Q into canonical form, the matrix Q* for an arbitrary number

of objects M has the block form:

3Note that the diagonal elements are not included in the cost since they do not measure any
interaction among features
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Q* = 0 0 SKTAK_ISK 0 0 (4'28)

= |0 0 Q 0 0 |. (4.29)

Since noise induces a small non-zero value in the off-diagonal elements, instead
of detecting zeros we must detect the transition between blocks (signal) and the off-
diagonal elements (noise). Even assuming correct sorting, this transition is quite hard
to detect, based on local values alone, due to the lack of knowledge about noise char-
acteristics. In other words, it is not possible to set up a threshold below which an
entry could be considered zero. The threshold is determined by an optimality criterion
involving the noise probability distribution function [VT68].

However, there are global constraints that can be applied to Q*. First the rank of
each block is constrained to be 2 (a line), 3 (a plane) or 4 (a full 3D object). Second,
we can relate the rank of a block to its energy: in fact, equation (4.28) shows that the
rank of each Qg is the same as the rank of the shape matrix of object K. Also, the
square of the Frobenius norm (F-norm) of matrix Qx relates to the block energy and
to its singular values ok, according to:

Ng Ng
IQxllE = Z; X; Q" =0k, T+ 0kp (4.30)

i=1 j=
where N 1s the number of features of each block and R its rank. The number of
non-zero singular values is R = 2,3,4 depending whether the object is a line, a plane

or a 3D object respectively. Since Qg is orthonormal, all singular values, ok, are equal
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to 1 and hence for each type of object, the sum (4.30) adds to 2 (line), 3 (plane) or 4

(3D object). Then, we can relate the energy of each block with its rank by

Ni Ni

Qx| = Z E Qi (4.31)
=1 j5=1

= 0'%(1 + -+ O'?(R = rank(Qx). (4.32)

Instead of considering an individual block, let us compute the sum (4.30) for the
first m columns/rows of Q*, defined by the function &(+):

e(m) =33 Q;7, (4.33)

=1 j=1

for m = 1...N. Then, columns for which the integer part of € increases one unit are
potential block limiting columns, provided the block rank constraints are satisfied.
Consider Figure 4.5 which illustrates one possible shape of the function ¢ for the case
of 2 objects with rank 4 shape. The vertical dashed lines indicate rank jumps, that is,
columns where ¢ is a whole number or its integer part increases by one (under noisy
conditions, except for m = N, the function ¢ may never be a whole number). Given
the indices of the columns of integer crossing by e, segmentation consists in finding the
blocks that match these rank jumps and satisfy the constraints. The solution is not
unique, as our examples illustrate in Figure 4.6. For a rank 8 matrix Q*, we have 8
possible segmentations, obtained by considering all possible combinations of rank 2, 3
or 4 blocks whose sum is 8.

In Figure 4.6 we show only four possible solutions for this example. The numbers
in Figure 4.6(a) represent the columns and rows that limit submatrices of Q* for which
the rank jumps by one. In the same figure, the shaded rectangles represent the correct
feature segmentation. The superimposed white blocks in Figures 4.6(b), (c¢) and (d)
show other possible segmentations that also match the rank jumps and satisfy the
block rank constraint. Among the 8 possible configurations, figure 4.6 considers the

following scene segmentations for the rank 8 Q*:

4.6(a) -Two rank 4 objects: assuming the scene is formed by two, rank

4, objects there is only one block configuration. The first four rank
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Figure 4.6: Possible QJ;’s for a rank 8 Q*: (a) One line and two planes. (b) Four lines.
(c) Two 3D objects. (d) One full 3D object and two lines.
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jumps form object one and the remaining four the second object. This

is also the correct solution.

4.6(b) -One object with rank 2 and two objects with rank 3. In other
words, the scene is made of one moving line and two planes. These
objects also form a shape interaction matrix with rank 8. In the figure
we show one possible configuration, where the first block has rank 2

(a line) and the other two blocks have rank 3 (planes).

4.6(c) -Four lines. Each of the blocks has rank 2 and represents one line.

In a rank 8 Q we can have four of these blocks.

4.6(d) -One 3D object and two lines. In this configuration the first block
has rank 3, the second has rank 2 and the third rank 4. With these

three blocks two more combinations are possible.

Considering all possible combinations, the correct solution is easily determined through
the energy maximization of the blocks. Since the total energy of Q* is equal to the
constant

N N

e(N) = Q= 222; Qi = rank(Q), (4.34)

i=1 j=
we can divide it into the energy of the blocks and the energy of the off-diagonal.
The best solution is then the one which concentrates most energy in the blocks. In
summary, the detection process is a constrained optimization process which maximizes
the energy of the blocks subject to the constraint that each block represents a physical
object (line, plane or full 3D).

4.4.3 Interpretation of the Cost Function

The algorithm described in the previous sections has an interesting interpretation. This
interpretation will support the decision reduce the search effort by using a hill-climbing
strategy. We will show that the hill climbing strategy finds a solution that represents
the whole class of all possible solutions that make Q block diagonal.
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Assuming that we have a correctly sorted Q, let us recall the definition of function
e(+) as in (4.30):
e(m) =33 Q%" (4.35)

Now let us compute a family of functions () where O represents the set of all
“correct” shape interaction matrices. By “correct” we mean all possible block diagonal
matrices that result from permutations of rows and columns of Q*. For segmentation
purposes these matrices are in fact indistinguishable. In short, these permutations

switch columns and rows of features belonging to the same object. Figure 4.7 illustrates

el

Figure 4.7: Several possibilities for energy functions. Fach curve represents the energy
function for a different set of permutations of the columns of Q. Function £* is an
upper bound of the all set of &

how the set ¢© might look for the example considered throughout this section. In a

noise-free environment, if Q* contains M blocks, each of the functions &, (i € O), has
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the same value for columns, say C = {¢1, -+, ¢k, -+, car}, that limits each of the blocks
(see Figures 4.3 and 4.7). At each of these columns the function &'(cx) represents the

total energy of the first K blocks:

. CK CK K
e'lex) = z_:z_: fo = 2_: rank(Qy). (4.36)

Values ¢'(cx) are invariant to “correct” permutations of Q* due to its block diagonal
structure. In fact, they are the only important points for detecting the limits of the
blocks. Among the whole family of functions, we denoted ¢* as,

e = r@g;((z—:"), (4.37)
which bounds the whole set, and is represented by the thick curve in Figure 4.7. Then,
function ¢* maximizes the energy of any submatrix of Q* formed by its first m columns
and rows. Since values ¢/(K) contain all the information needed for block detection,
and are invariant to permutations that block diagonalize Q, all functions &'() can
be represented by ¢* without any loss of information. As we showed in section 4.4.1,
function ¢*() can be computed by a hill-climbing search, thus reducing the search space
to polynomial complexity. Due to noise, the energy of the block will not be a whole
number at the block’s border. As Figure 4.8 shows, at the block limiting columns, the
value of the energy will exhibit a small difference ¢ from the integer crossing, which is
the energy of the off-diagonal elements. Since we do not have a statistical description
of noise, we cannot compute an estimate of 6 and use it to modify the threshold of the
possible block limiting columns. However, this limitation can be easily overcome. The
energy of noise induces an uncertainty « in the position of the block limiting column
(see figure 4.8). In other words, we do not know whether feature ¢k, for which *(ck)
is integer, belongs to the previous block or the following one. By testing the linear
dependence between feature cx and the neighbouring ones, we can determine to which
of the blocks it is closer.

Finally, recall that one of the reasons we did not use graph theoretical algorithms

was because they rely on local information. Hence, the segmentation is done based on
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relationships between individual features, making the sorting quite sensitive to noisy
features. As a consequence, due to a single strong noise spike between two features
belonging to different objects, the MST algorithm joins two different objects through
that link.

Instead, with our algorithm, the effect of a single noisy feature is smoothed. Assume

™

P
3

N

- N W b~ U1 OO N

Figure 4.9: Noisy Q with misclassification of two features.

that there is one feature whose energy of interaction with features of a different object
is high. Then, since we are sorting features by the strength of their coupling, the noisy
elements will be understood (and sorted) as signal. This is illustrated in Figure 4.9,
where the correct column and row of a feature has been swapped with the column
and row of a feature belonging to another object. If the block has Ny x N elements,
the number of elements that have been wrongly swapped is 2Ny — 1 (one row and
one column), that is the ratio of noisy elements over the total size of the block is
(2N, — 1)/NZ. If Ny, > 1, the influence of noise in the function ¢*(-) is of the order of
1/Ny of the noise to signal ratio. In summary, the fact that we use global constraints

to sort the matrix Q by maximization of the energy of all its submatrices, produces
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a smoothing effect on noise, making the process more reliable against individual noise

spikes.

4.5 Summary of Algorithm

Now the of our algorithm can be summarized as the sequence of the following steps:

1. Run the tracking process and create matrix W

2. Compute r = rank(W)

3. Decompose the matrix W using SVD, and yielding W = UXV7T

4. Compute the shape interaction matrix Q using the first r rows of V7T

5. Block-diagonalize Q

6. Permute matrix V7 into submatrices corresponding to a single object

each

7. Compute A; for each object, and obtain the corresponding shape and

motion.

It should be clear by now that the segmentation algorithm presented above is indepen-
dent of the number of objects, that is, the block diagonal structure of Q* is valid for an
arbitrary number of moving objects. Furthermore, this property holds also when the
shape matrix of the objects has rank less than 4 (planes and lines) so that the total
rank of W is the only required prior knowledge. Finally note that instead of permuting

columns of W in step 6 we permute columns of V¥, which is equivalent.
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Chapter 5

Experiments

In order to test the algorithm’s performance under increasingly demanding condi-
tions, three sets of experiments were planned. In the first, the feature trajectories are
synthetically generated. In the second they are extracted from real images taken in
the laboratory under controlled imaging conditions, and in the third the real images

are acquired in a highly noisy outdoor scene, where tracking is unreliable.

5.1 Experiment 1: Synthetic Data

Figure 5.1 shows the 3D synthetic scene. It contains three transparent objects in
front of each other moving independently. A static camera takes 100 images during
the motion. The closest object to the camera is planar (rank 3) and the other two

are full 3D objects (rank 4). So this is in fact a shape-degenerate case. Each object

7
_

Figure 5.1: Synthetic scene. Three objects move transparently with arbitrary motion
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Figure 5.2: 3D trajectories of the points

translates slightly and rotates over its own centroid in such a way that the features of all
objects are completely intermingled in the image plane. This complexity is intentionally
introduced in order to demonstrate the fact that our motion segmentation and recovery
method does not use any local information in the images. A total of one hundred and
eighteen (118) points are chosen: 33 features from the first object, 49 from the second,
and 36 from the third. Figure 5.2 illustrates the 3D motions of those 118 points.

The projections of the 118 scene points onto the image plane during the motion,
that is, the simulated trajectories of tracked image features, are displayed in figure
5.2 with a different color for each object. Independently distributed Gaussian noise
with one pixel of variance was added to the image feature positions to simulate errors
in feature tracking (Figure 5.3). Of course, the identities of the features are assumed
unknown, so the measurement matrix created by randomly ordering the features was
given to the algorithm.

Figure 5.4 (a) shows the shape interaction matrix Q: the height is the square of the
entry value. The result of sorting the matrix into a block diagonal form is shown in

Figure 5.4(b). We can observe the three blocks corresponding to objects 3, 2 and 1: the
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Figure 5.3: Noisy image tracks

118 features are correctly sorted. Regarding the block detection algorithm, figure 5.5
shows the profile of the energy function ¢*. The vertical lines indicate the rank jumps.
Object 1 is the plane and the graph shows that the energy of the submatrix made up
by the first 36 rows and columns of Q* has norm 3, which is in fact the rank of object
1. Likewise, the first 85 rows and columns form a matrix with energy 7 which is the
result of adding a rank 4 object (the wavy object). Finally the features of the spherical
object are the last to be sorted, again producing an increase of 4 in the energy. Figures
5.6, 5.7 and 5.8 show one view of each of the recovered shapes of the three objects in

the same order as in figure 5.2. Figure 5.8, showing the planar object viewed edge-on,

indicates a correct recovery.
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Figure 5.4: (a)Unsorted and (b) sorted shape interaction matrix
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Figure 5.6: Recovered shape of the wavy object
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Figure 5.7: Recovered shape of the spherical object
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Figure 5.8: Recovered shape of the planar object
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Figure 5.9: Image of the objects and feature tracks

5.2 Experiment 2: Laboratory Data

The laboratory scene consists of two roughly cylindrical shapes made by rolling card-
board sheets and drawing dots on the surface to create reliable features. The cylinder
on the right tilts and rotates in the plane parallel to the image plane while the cylinder
on the lefthand side rotates around its axis. The 85 images were taken by a camera
equipped with a telephoto lens to approximate orthographic projections, and lighting
was controlled to provide the best image quality. A total of 55 features are detected
and tracked throughout the sequence: 27 belonging to the left cylinder and 28 to the
other. Of course the algorithm was not given this information. Figure 5.9 shows the
first 85-frame sequence, and the tracks of the selected features are shown as superim-
posed graphics. The scene is well approximated by orthography and the tracking was
very reliable due to the high quality of the images.

Figure 5.10 (a) shows the shape interaction matrix Q for the unsorted input fea-
tures. The sorted block diagonal matrix Q* is shown in Figure 5.10 (b), and the features

were correctly grouped for individual shape recovery. The resultant three-dimensional
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The block diagonal Q*
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Figure 5.11: The recovered shape of the two cylinders

points were linearly interpolated to produce the surface of figure 5.11 in order to con-
vey a better perception of their shape. The actual 3D feature position is shown by the
asterisks (*) over the surfaces.

To show the theoretical and practical validity of the graph interpretation of matrix
Q, we also implemented the Maximum Spanning Tree algorithm. Figure 5.12(a) shows
the links between all features. The weight of an edge, linking features ¢ and j, is given
by @3;. Computing the MST we obtain the tree of figure 5.12(b).

The MST is formed of two subtrees with features of one object only and linked
by one noisy edge. This edge is the one with the least weight (minimum energy) in
the whole tree. Then, segmentation is obtained by removing a number of edges (in
ascending order starting from the minimum energy edge) which depends on the number
of objects. The general solution is computationally intricate. Above all, the reliability
of the MST against noise spikes is very low: if two features belonging to each one of the
cylinders were linked by a strong noisy link, the MST algorithm would select it instead
of a correct link. The final tree would have two noisy edges linking both cylinders,

instead of one. Since for this scene only one edge should be removed, the two subtrees
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Figure 5.12: (a) - The graph representing Q. (b) - The Maximum Spanning Tree
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Figure 5.13: First image with tracks

would have never be obtained.

5.3 Experiment 3: Noisy Outdoor Scene

In this section we show some tests done with images taken in an outdoor scene. The
main difficulty in the analysis of this type of scenes is the lack of tracking reliability.
Feature tracking is particularly noisy in this scene for two main reasons. First, the
camera we used has low signal to noise ratios. Second, unlike laboratory scenes, we
cannot control the texture and illumination of the scene so the selected features seldom
verify the assumptions made beforehand. Also, the objects in this scene move in a
particular fashion highligting the shape and motion degeneracy problems.

Figure 5.13 shows the first of the 72 images of the sequence. The scene is formed
by a moving face in the foreground and a still background. The unreliability of the
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Figure 5.14: The unsorted shape interaction matrix for the outdoor scene

tracking can be observed on the building in the background. Since they are still, the
tracks should look like a dot or a small cloud. However, we observe that some tracks
have a small linear motion, considerably greater than the one pixel variance which is
the maximum that can be expected in laboratory environments. In this case the rank
of W was 5. The shape interaction matrix for this scene can be observed unsorted in
figure 5.14 and sorted in figure 5.15.

Notice the few peaks in the upper left corner of the matrix in contrast with the
generally flat pattern. This is due to the fact that the total energy of the matrix is
constant and the number of features is unbalanced between the two objects. Recall
from previous discussions that, for features 7 and j belonging to the same object, ();;

is given (again for a particular configuration of the object’s coordinate system) by:

Qi; = SiAT'S; (5.1)

A = ss? (5.2)

64



0.8

0.6

100

Figure 5.15: The sorted shape interaction matrix for the outdoor scene.

X2 0 0 0
0 SY? 0 0
0 0 S 720
0 0 0 N

(5.3)

(5.4)

The norm of matrix A increases, in general, with the number of points. The value of
()ij, which depends on the inverse of A, decreases with the same number. This is one
of the drawbacks of the methodology for large numbers of features. In Chapter 6 we
will see that noise energy grows with the size of the measurements matrix, and since
the total energy of Q is constant, for larger numbers of features the noise influence
becomes more important.

Nevertheless, the segmentation algorithm has performed without error. In Figure
5.16 we show the energy function £* for the sorted Q*. As we can see, feature number
5, for which &* crosses the level 2, bounds the foreground block, providing the segmen-
tation shown in Figure 5.17. The small squares indicate the feature position and the

respective tracking window, and the numbers list the sequence by which features were
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Figure 5.16: The profile of *().

sorted.

From the profile of ¢* we conclude that the detection algorithm segmented the scene
into a rank-2 (foreground) and a rank-3 (background) object.

Recall that the background does not move. Even though the shape matrix of the
background has rank 4 (3D object), its motion matrix has rank 2. In fact, with the
appropriate set of coordinate frames and noting that translation is zero, the motion

matrix of the background can be written as

(1 0 0 ty ]
10 0 t,

M=o o | (5.5)
LO L0 2y |

where t,, and t, are the coordinates of the background centroid. From (5.5) we
conclude that only the first two columns are linearly independent, therefore instead of

a 3D object the measurements generate a rank 2 matrix (equivalent to a line). However,
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Figure 5.17: List of the sorted features. Note the correct sequence of the features. The
vertical line of Figure 5.16 shows that the first four features make a rank-2 block
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Figure 5.18: Energy function for five different assumed ranks for matrix Q*

since the centroid is not still, there is a noisy translational component, measurable in
the singular value decomposition of W that may increase the detectable rank to 3. The
same situation applyes to the foreground, where the motion is, essentially, a rotation
around the axis perpendicular to the image plane.

To verify the sensitivity of the algorithm, in this particularly harsh case, we run
the sorting and detection algorithms for different values of the total rank of W. Figure
5.18 shows five curves, representing *() for matrices Q* with ranks 4, 5, 6, 7 and 8 (all
possibilities with two objects). In all cases the sorting was correct, that is, features were
sorted in the same sequence shown in figure 5.17: First come the foreground features
and in the same order, and then the background features, however the segmentation
outcome differed. Note the common and steep profile of ¢* of the first 4 features
(belonging to the foreground) which contain all the energy of the subspace of the

foreground shape. Then, profiles differ almost of a constant bias.
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Chapter 6

Computing the Rank of Matrix W

In the previous theoretical developments we assumed that the rank of the measure-
ments matrix, W, was known. In order to build the shape interaction matrix, Q,
this knowledge is essential since the rank specifies the number of singular vectors V
from which Q is created. Due to camera noise and other tracking errors, the rank
of matrix W will, in general, differ from the correct one. Therefore, we need a rank
determination procedure which selects the significant singular values and vectors.
Several approaches have been developed regarding the subject of signal/noise sep-
aration. One of the most efficient of all is the MUSIC algorithm [BK79, Sch80]. This
algorithm decomposes a measurement matrix into two matrices whose columns are
in orthogonal subspaces, one containing the signal and another the noise, provided
we know the covariance of the noise. This algorithm is quite robust but the coor-
dinates used to represent the signal are inconvenient for our purposes and hide the
block diagonal properties (of Q) we are looking for. Since we use SVD to build our
constructs, and given its rank revealing properties and numerical stability, we closely
follow the approach of [Ste92a], formalizing the rank determination problem under the
SVD framework and including uncertainty models of the feature tracking process.
The rank of the observations matrix, W, is determined by an approximation crite-
rion for which the noise model is required. We model the noisy imaging process as the

result of additive noise to the projection equations (2.7)[Wil94]. Then, the ith feature
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position, in frame f, is given by

’LNLf,i Ut i €uf,i (61)
’lN)f’Z' Vs €Ufz‘ ’

where Euyy and Eyy,; are the additive noise components in the X and Y directions of the
image plane. From equation (6.1) we foresee the need for feature tracking modeling,
namely the characterization of the feature position uncertainty. To make the procedure
more clear we will develop the general rank determination approach and we will then
introduce the tracking specifics.

The 2F x N noisy measurement matrix, W, in this case, will be given by the matrix

sum

W = Ms+l (6.2)

S

W = W<€, (6.3)
where &, and &, are two F' x N matrices and W 1is the noise-free measurement matrix,
whose rank we want to estimate. It is now clear from (6.3) that the rank of W can be

at most N. Then, the singular value decomposition will be given by:

w = uxy’ (6.4)
Y = diag(oy,---,0n) (6.5)
U € R¥N (6.6)
V ¢ RV (6.7)

In a noise free environment the rank of W is determined by the number of non zero
singular values o;, whereas in the noisy case we will have to compute a threshold
that separates the noisy singular values from the significant ones. From the SVD
decomposition of W we have to estimate the number of columns of U ,V and the

singular values o; that represent an estimate W of W.
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6.1 Matrix Approximation

The singular value decomposition of W “spreads” the noise components over all the
elements of U, V and ¥. In other words, it is not possible to isolate the noise-free
components of these matrices or even directly estimate noise influence. Then, we will
seek an estimate W, with the same rank of W, that approximates W in the least
squares sense [Ste92a, Dem87, GHS87]. In other words, we must solve two problems
here: we have to determine the “real” rank of W and also obtain an approximation of
the “real” observations matrix W. Then, following the minimum error criterion, if r
is the rank of the noise-free measurement matrix W, for all possible 2F x N matrices

Y with rank(Y) < r, we seek an estimate W that minimizes the error:

X7 _ YA7I(2 _ . X 2
W= Wik = min W= Y]} (6.8)

Fischer’s theorem [Ste92a] states that a solution W exists, and the error (6.8) is ex-

plicitly given by:
W Wi = ol +- +0} (6.9)

Expression (6.9) is equivalent to saying that the approximation given by

01

W = Us,py, Vi, (6.10)

Or

is the minimum error approximation of W by a rank r matrix. Comparing with the

“correct” equations, we have the following correspondence:

W = W4+¢& (6.11)
W = W4¢ (6.12)
01 Or41
W = U2F,1:r V]{f’l;r + U2F,r-|—1:N V]1\177,«+1(§-13)
Oy ON
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where the notation ;;; denotes column or row range. Since W is the closest matrix to
W with rank r, its error is minimum; in particular, it is smaller than the error in the

real measurements W, that is:
IW - WL < W= W] = €]} (6.14)

Using (6.9) in (6.14) yields:
2F N
orpt oy < lEE=22 e (6.15)
i=1 j=1
Using this relation and knowing the magnitude (norm) of the noise matrix, we can
define the rank of W as the smallest integer, r, such that inequality (6.15) holds, or
equivalently, the smallest integer r, for which the sum of the last N — r singular values
of the noisy matrix is less than or equal to the norm of the noise matrix.
However, there is one problem with this strategy: the entries of matrix £ are
stochastic variables, therefore we do not know their absolute values (realizations). If
the feature tracking provided a statistical description of the feature positions we could

have a decision based on mean values of the noise component. Then, if we compute

the mean of equation (6.15) we obtain the relation:

E[|W-WI}] =Eot.] ++E|o}] < E[I€]}] (6.16)
< EEEH] (6.17)

The terms ¢;; in (6.17) are the statistical second moment (variance) of the feature

noise. Using the notation as in (6.1), the covariance of the noise is given by:

S E [gfj] = Y3 (EE, ]+ EEL)D. (6.18)
i=1 j=1 i=1 f=1

In general, for each sampling time, the uncertainty of each feature point is charac-

terized by a 2 x 2 covariance matrix

Oy = E ([ Sugs ] [ Eupi Eupy ]) (6.19)

Euy;
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L Tuvyi ﬂ-vfz'
The error (6.17) is finally expressed as:
N X F
E[|W = WI|}| = Elod] +-+ E[od] <372, +72,). (6.22)
=1 f=1

From (6.22) we can finally describe the procedure to detect the rank of W:
1. Decompose the real measurements matrix W using SVD.
2. Compute the sum of the last N — r singular values (o, 4+ -+ + on).

P . . N F
3. Find the rank as the value of r for which o, +- - -+on < T 3., Ele(wzm —|—7r12}fp),
where 7 is an experimental constant used to adjust for unaccounted deviations

and for the difference between the actual value and the expected value of o;.

It is now clear that we need to compute the uncertainty of the feature position,
II;;, in order to compute the rank and the approximation of W. This is done in the

following section.

6.2 Tracking and Uncertainty Computation

Here, we use a tracking scheme similar to that developed by [LK81] with multiresolu-
tion capabilities as in [Mad93]. To compute the rank of the matrix W we need to have
uncertainty estimates of the feature positions, therefore we reformulated the tracking
problem in order to include statistical information. The tracking is introduced consid-
ering three major issues: First, given the position of image points and their brightness
values, we describe how to compute the point displacement between two consecutive
images. Secondly we compute the uncertainty affecting the estimates of the displace-

ment and use it to define the feature selection criterion. Finally, we show how to track
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and compute the uncertainty along the whole image stream, that is, how to integrate

each of these displacements into an image feature trajectory.

6.2.1 Tracking Between Two Frames

Given a set of image points (features), tracking consists in computing the displacement
of the image points from the original image to the next. In previous chapters we related
these displacements with the 3D parameters like the object’s shape or motion. Now
we want to compute the displacement itself from the raw brightness data.

Generally speaking, finding the image position of one point corresponding to the
same physical point in another image is a search problem known as the correspondence
problem in computer vision. Given an arbitrary motion of the object, the image se-
quence thus generated may change in such a complex way that this task may become
impossible. To build a feasible feature tracker, some assumptions have to be made in
order to simplify the problem. Without loss of generality, experience has shown that the
following assumptions are quite reasonable, and widely used [Hee88b|[HS81][WAS3]:

1 The motion of the features between two consecutive images is essentially
translational. This is identical to assuming smooth motion of the

object.

2 The temporal sampling is such that the magnitude of the displacement

between two frames is small.

3 The displacement field is smooth. Neighbouring pixels usually belong to

the same feature and thus have similar motion.

To avoid unnecessary notation “clutter”, we most of the time dropped the indices 2
and f from the variables. All the development in this section refers to a single feature,
therefore indices are used only when strictly required for better understanding.

With the above assumptions in mind, let /¢(u,v) define the image at the f sam-

pling interval, (u,v) the image point coordinates (pixels), and d = [d, d,]T a vector
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representing the feature displacement from frame f to frame f 4 1. Using assumption

1, the (f 4+ 1) image can be expressed as a translated version of the previous image:
]f_|_1('LL,’U) = ]f(u - du7 v — dv) (623)

Though nonlinear, we can obtain a linearized expression for equation (6.23). Consider

the Taylor expansion:
Ii(u — dy,v —dy) = I§(u,v)—g - d+ O, (6.24)

where
al
9o v

is the image gradient and O the higher order terms. From assumption 2, we know that
the magnitude of the interframe displacement is small (||d|| < 1): higher order terms

of (6.24) are thus negligible, and discarding we obtain
Ii(u — dy,v — dy) = I§(u,v) — g - d. (6.26)
Inserting (6.26) in (6.23), and rearranging the terms, we reach the following relation:

h=1g(u,v) — l11(u,v) = [ Ju Yo ] l 2: ] (6.27)
= g-d. (6.28)

Equation (6.28), known as the optical flow constraint equation [HS81], relates the
displacement to the image time variation and the image gradient. To make equation
(6.28) a more accurate description of real images we first have to represent pixels, that
is, (6.28) has to be discretized. Also, real images are noisy, so we add an additional
term reflecting camera perturbations. The final equation describing the effect of motion

on the brightness value of each image pixel is:

dy )
Tp(ui,vi) — Lppa(ug, vi) = [gu; G [ J ] + 73 (6.29)

v

o= gd4, (6.30)
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where h;, gu,, g», represent pixel variables and 7; the noise term.

Both terms h; and (gu,, 9»,) are computable from two consecutive images, however

(6.29) does not uniquely solve for the displacement. We need extra constraints in

order to estimate d. Recall from assumption 3, that the displacement field is smooth:

neighbouring pixels usually belong to the same object and hence have similar motion.

We can make d unambiguous by combining measurements from the n x n window

IMAGE

han

Figure 6.1: Correspondence between pixels and measurement vector

around the feature point. Figure 6.1 shows the relation between the measurements

h; and their image location. The window measurements are representable in a linear

matrix equation, forming the

ha

hnxn

where

complete tracking model:

91'11 91'21 d,
. . dv
gunxn gvnxn

- Ad,

Yuy Yo,
gunxn gvnxn
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is the design matrix. Given the overconstrained system of (6.31), the least square error

estimate a, of d, is computed from
d=(ATA)"'AT p, (6.34)

Equation (6.34) is a linear relation between the estimate and the measurements. Through
error propagation we can compute the uncertainty of the estimate, given by the covari-

ance H& of vector d:

II; = Cov [(;l] zE{(Ai(AlT] (6.35)
= E[(A"A)"'AThh"A(ATA)™] (6.36)
= (ATA)T'ATE [hh"| A(ATA)T. (6.37)

It is reasonable to assume that the noise is spatially and temporally uncorrelated
[Fau94], in other words, one pixel’s brightness value is independent of the values of other
pixels and also independent of their value in other time instants. Since 7; is gaussian
white noise with zero mean and variance o7, and since h; = Iy (ug, vg) — Tp(ug, v;),

the covariance of h is computed by

Cov[h] = E[hh’] (6.38)
E[R]] -+ Elhih]

= . (6.39)
Elhnba] -+ E[h]]

Since the noise is spatially and temporally uncorrelated, we have
Elhikj] = 0 (2 #7), (6.40)
so

E[R) = E[Lppa(ui,vi) = Ii(ui,v)]” (6.41)

k3
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= B Iy (ui,v) + Ip(ui, v0)? = 20 g (i, v0) I (s, 07)]

_ 9.2
= 2o07.

Replacing (6.43) back in (6.39), the covariance of h assumes the simple form:

Cov[h] = 20%L,x,

(6.42)

(6.43)

(6.44)

where I,,x,, is the n x n identity matrix. Replacing (6.44) in (6.37) and simplifying

some terms, the uncertainty of the estimate d is expressed as:

202 (ATA)L.

Noting that the variance of the gradient £ [ggT] is estimated by

A,

the uncertainty of the displacement estimate is given by the expression:

1
w29

2 gzi > Gu; 9o,
> JuiGvi;, 2 931.

1 T

7Tu 7ruv
7ruv ﬂ-v

92
20—[ /\—1
2 P g .

n

6.2.2 Selecting Trackable Features

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)

(6.50)

Equation (6.50) shows that tracking uncertainty depends upon two adjustable factors:

the size n of the window and the inverse of the second order moment of the gradient.

In terms of window size, the higher the value of n the lower the uncertainty. However,

the size cannot increase arbitrarily without violating the assumption of smooth motion:
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for high enough n, the window may contain points with different motions, making the
least square estimate invalid. Experience has shown that windows of 15 x 15 are a
good trade-off between trackability and constraint satisfaction. The most important
factor is in fact the gradient of the window. Notwithstanding high n’s, matrix A,
may be non-invertible or badly conditioned, thus the uncertainty can be very high.
This phenomenon is known as the aperture problem [HS81, Hil84], and is illustrated

in Figure 6.2. Assume there is an object with oriented edges and we selected the

motion

window

object

Figure 6.2: Aperture problem in feature tracking

window indicated in figure 6.2. The set of arrows inside the window represent the image
gradient in that region. Observe that if the object moves in the perpendicular direction
of the gradient, the pattern inside the window remains unchanged, and no motion is
detected. This phenomenon is revealed by the zero determinant of A,. Since the v
component of the gradient is zero for all points, A, is singular and thus the uncertainty
is considered infinity. This fact can be used to select the trackable features. From
expression (6.50) we determine Il for all image points and select the best ones from
the condition number of matrix A;. The condition number is given by the ratio between

the largest and the smallest eigenvalues of matrix Ay, and for a well conditioned matrix
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this ratio should be close to 1. Clearly, the computational burden is great, since we
have to compute the eigenvalues of the moments of the gradient, for all possible n x n
windows. Fortunately, this process runs only once to select the trackable features in
the first image. Performance tests presented in [Mad93] show that rates of 3 frames

per second are obtainable with ordinary hardware.

6.2.3 Tracking Over the Whole Sequence

Recall that the measurements matrix W is created with the image position of the
selected features. In the previous section we developed a method to compute the
feature displacement between two frames. The integration of these displacements is
done by registration of the first image and then computing the displacement to the
current one, as opposed to adding up all the displacements computed from image 1
to the current one. Figures 6.3 6.4 and 6.5 show graphically how these operations are
done.

After selecting the features in the first image [y, we acquire image [; and compute
the first displacement di. Assuming a highly noisy image [, the displacement error will
be high. In other words the deviation between the correct coordinates (uq,v1) and the
estimated coordinates (1, 01) is high. Figure 6.3 shows this error by the shaded squares
representing both the estimated and correct position of the feature. The registration
of image [y consists in shifting the original feature by d; and forming an “estimated”
image I; as shown in Figure 6.4. Then, when a new image [; is obtained, we compute
the displacement between the registered original window and the current image. If
image [; has low noise the estimate is accurate (dashed arrow) and the coordinate
error will be small, as seen in Figure 6.5. Then, the estimated position in I will be the
same as if it was estimated from the correct position (solid arrow). In summary, the
error made in the previous sampling interval will not affect the estimate (tsg, 02). The
basic advantage behind this procedure is that even though the cumulative uncertainty
of (élo + &1 4+ 4+ élf) grows, the uncertainty of the feature coordinates at any instant

is constant and is given by (6.52). In other words, if the tracking was particularly noisy
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Figure 6.3: Tracking between frame 1 and 2
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Figure 6.4: Registering first image
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Figure 6.5: Tracking between frames 2 and 3

between any two frames, the error will not propagate to future tracks and we have a
constant expression, given by (6.52) for the uncertainty.
In conclusion, having selected N features in the image, the displacement and posi-

tion uncertainty of each feature ¢, at each sampling interval f, is given by:

di; = (ATA)1AT (6.51)
-1
292. > Gui,; Iv;
I = 207 R 6.52
f O-I [ Zgui]gvi] Eg?}” ( )
7r2 ﬂ-uv ¢
_ [w: WQ] (6.53)

As a final comment we should emphasize that equations (6.51) and (6.52) must
be used under the assumptions referred to before. In other words, we must guarantee
that real images obtained in practical situations do not violate the assumption upon
which the above equations were obtained. The dominance of translational motion is
guaranteed by the temporal image sampling which we talke as high compared with the
velocity of the imaged objects. This fact also helps the feature displacement between
two frames to be small, so that the Taylor expansion of the image is valid. However, the

most effective way to handle this constraint is through multiscale image representations
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[BAHH92, Ros84]. In fact, in [Mad93] an image pyramid is built and the feature
displacement is then computed from coarse to fine levels of resolution. At each level
of resolution the images are registered using the displacement computed at the higher

level such that ||d|| < 1. The details of the implementation are documented in [Mad93].

6.3 Algorithm for Rank Determination of W

With the developments of the previous section we can now easily follow the rank

determination algorithm outlined in section 6.1. The noisy measurements matrix W

is given by:
W = W+¢& (6.54)
U171 U192 ... UIN Euy €uy -+ Euy
. UF1 UF2 ... UFN n €up €ug -+- Euy (6 55)
= 7 ‘
V11 V12 ... UIN Evi Euy -+ Euy
L YVF1 VUF2 ... UFN | | €v1 €vy -+ Euy |

where each of the noise terms (e, €,,) has covariance matrices given by (6.52).
Recall from section 6.1 that the approximated matrix W is given by the first r
singular values and singular vectors. Constant r is the estimated rank, given by the

smallest integer for which the sum of the last r singular values satisfies the inequality:

N F
ol o ST Z(ﬂ'im + 72 ) (6.56)

Vfp Y
p=1 f=1

where 7 is an adjusting factor (experimentally obtained).
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Chapter 7

Discussion and Conclusion

In this thesis we have addressed the problem of motion and shape recovery in scenes
with multiple moving objects. The problem is approached using the representation of
the Tomasi-Kanade Factorization Method.

We have presented a new derivation, where the translational motion component is
included. The representation used here allows an easy expression of motion and shape
in multi-body scenes, where translation cannot be eliminated. We have also provided
a geometrical interpretation to the matrices involved in the Factorization Method.

More importantly, we have proposed a new mathematical construct called the shape
interaction matriz that leads to a solution for the multibody structure-from-motion
problem.

The striking fact is that the method allows for segmenting or grouping image fea-
tures into separate objects based on the shape properties without explicitly computing
the shapes themselves. Also, no prior knowledge of the number of moving objects in
the scene is assumed.

This is due to the interesting and useful invariant properties of the shape-interaction
matrix Q. We have shown that Q is motion invariant. Even when the matrix is
computed from a different set of image-level measurements W, generated by a different
set of motions of objects, its entries will remain invariant. Each entry has the same
unique value independently of the trajectories of the objects. The motion invariance

property of Q also means that the degree of complexity of the solution is dependent
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on the scene complexity, but not on the motion complexity.

The shape interaction matrix Q is also invariant to the selection of the object
coordinate frame. Thus, the origin of the object coordinate system can be placed
anywhere without changing the entries of Q.

Another interesting fact is that the shape interaction matrix can handle many
degenerate cases as well, where one or more objects may not be a full 3-D object, but a
linear or planar object. The synthetic example shown in the experiments chapter was
in fact a degenerate case where a planar object was included.

Using these properties of the shape interaction matrix we have developped a sort-
ing and detection algorithm that determines the block-diagonalization through an off-
diagonal energy minimization.

Underlying the computation of matrix Q, the determination of the rank of W was
handled by estimating the uncertainty of the feature tracking and feeding it back in a
minimum error estimate of the significant singular values of W.

Finally, we have shown a set of three experiments under different scene conditions,

which have shown the potential of the theoretical derivations.

7.1 Future Developments

This thesis has addressed the problem of multiple motion segmentation when the ob-
jects move with independent motions. That is to say, the columns of the motion matrix
M which belong different objects are linearly independent. There are quite interest-
ing aspects of rank degeneracies of the motion and shape matrices. We have shown
that the shape interaction matrix is invariant to shape degeneracy. In other words,
the zero/non-zero relationship between elements of the shape interaction matrix is not
affected by the rank of the shape matrix of each individual object. Furthermore, as
illustrated by our outdoor experiment, the rank degeneracy of the individual motion
matrix does not affect the segmentation either. Motion rank degeneracies can be un-

derstood as limitations of the orthographic camera model, since orthography does not
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model depth: for example, a full 3D object rotating around the camera’s focal axis is
indistinguishable from a planar object rotating the same way.

The problem becomes more complex if motions of two different objects become
degenerate between themselves, that is, if some columns of one motion matrix are
linearly dependent on the columns of the other motion matrix. This is the case in
articulated objects, where the motion of each joint is dependent on the other joints. The
challenge here is that the block-diagonality property of the shape interaction matrix
is lost. The current method cannot handle this case, although it can easily detect it.
We can verify the validity of the segmentation by analyzing the rigidity of the solution
using the motion and shape matrices produced by the factorization method.

This motion degeneracy is revealed by the intersection of the shape subspaces
(spanned by V) which are no longer orthogonal. One suggestion is to develop an
incremental version of this method, which has in fact been done by [MK94] and, at
each step, to segment and test the rigidity of the solution. Of course this leads to prob-
lems similar to those pointed out earlier : the cyclic dilemma between checking if the
solution is rigid and assuming rigidity to compute the solution. Assuming prior knowl-
edge about the scene, the case of articulated objects can be handled using parametrized
models [Reg95] which can be adapted to our method. However, the general case of lin-
early dependent motions requires careful attention and more research in order to fully
understand the behavior of the feature trajectories in the shape subspace.

An interesting future development of our method is the extension to more complex
projection models like perspective projection. In this case the useful properties of
shape subspace orthogonality are no longer valid. Even though we do not see any clear
evidence that such an extension is possible, we find the study of feature trajectories
in projective space promissing. One reason is that multiple motion segmentation is a
problem with weaker constraints than shape or depth computation: we may search for
relationships between the subspaces spanned by feature trajectories in projective space

without the need to reconstruct the scene.
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