
1 Navigation/Collision Avoidance

Obstacle Avoidance

Maria Isabel Ribeiro

3rd November 2005

1:1 Introduction

Given the a priori knowledge of the environment and the goal position, mobile
robot navigation refers to the robot’s ability to safely move towards the goal using
its knowledge and the sensorial information of the surrounding environment.

Even though there are many different ways to approach navigation, most of
them share a set of common components or blocks, among which path planning
and obstacle avoidance (may) play a key role.

Given a map and a goal location, path planning involves finding a geometric
path from the robot actual location to the goal. This is a global procedure whose
execution performance is strongly dependent on a set of assumptions that are sel-
dom observed in nowadays robots. In fact, in mobile robots operating in unstruc-
tured environments, or in service and companion robots, the a priori knowledge
of the environment is usually absent or partial, the environment is not static, i.e.,
during the robot motion it can be faced with other robots, humans or pets, and
execution is often associated with uncertainty. Therefore, for a collision free mo-
tion to the goal, the global path planning has to be associated with a local obstacle
handling that involves obstacle detection and obstacle avoidance.

Obstacle avoidance refers to the methodologies of shaping the robot’s path
to overcome unexpected obstacles. The resulting motion depends on the robot
actual location and on the sensor readings. There are a rich variety of algorithms
for obstacle avoidance from basic re-planning to reactive changes in the control
strategy. Proposed techniques differ on the use of sensorial data and on the motion
control strategies to overcome obstacles.

The Bug’s algorithms (section 2:1), [1], [2], follow the easiest common sense
approach of moving directly towards the goal, unless an obstacle is found, in
which case the obstacle is contoured until motion to goal is again possible. In
these algorithms only the most recent values of sensorial data are used.

Path planning using artificial potential fields, [3], (section 2:2) is based on a
simple and powerful principle that has an embedded obstacle avoidance capabil-
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ity. The robot is consider as a particle that moves immersed in a potential field
generated by the goal and by the obstacles present in the environment. The goal
generates an attractive potential while each obstacle generates a repulsive poten-
tial. Obstacles are either a priori known, (and therefore the repulsive potential
may be computed off-line) or on-line detected by the on-board sensors and there-
fore the repulsive potential is on-line evaluated. Besides the obstacle avoidance
functionality, the potential field planning approach incorporates a motion control
strategy that defines the velocity vector of the robot to drive it to the goal while
avoiding obstacles.

The Vector Field Histogram, [4], (section 2:3) generates a polar histogram of
the space occupancy in the close vicinity of the robot. This polar histogram, that
is constructed around the robot’s momentary location, is then checked to select
the most suitable sector from among all polar histograms sectors with a low polar
obstacle density and the steering of the robot is aligned with that direction.

Elastic bands [5] as a framework that combines the global path planning with
a real-time sensor based robot control aiming at a collision free motion to the goal.
An elastic band is a deformable collision-free path. According to [5], the initial
shape of the elastic band is the free path generated by a planner. Whenever an
obstacle is detected, the band is deformed according to an artificial force, aiming
at keeping a smooth path and simultaneously maintaining the clearance from the
obstacles. The elastic deforms as changes in the environment are detected by the
sensors, enabling the robot to accommodate uncertainties and to avoid unexpected
and moving obstacles.

A dynamic approach to behavior-based robotics proposed in [6], [7], models
the behavior of a mobile robot as a non-linear dynamic system. The direction
to the goal is set as a stable equilibrium point of this system while the obstacles
impose an unstable equilibria point of this non-linear dynamics. The combination
of both steers the robot to the goal while avoiding obstacles.

2:1 The Bug algorithms

The Bug algorithms, in its original version Bug 1, [1], or in the improved ver-
sion Bug 2, [2], are simple ways to overcome unexpected obstacles in the robot
motion from a start points, to a goal pointg. The goal of the algorithms is to
generate a collision free path from thes to g with the underlying principle based
on contouring the detected obstacles. The two versions of the algorithm differ
on the conditions under which the border-following behavior is switched to the
go-to-goal behavior.

Consider that the robot is a point operating in a plane, moving froms to g, and
that it has a contact sensor or a zero range sensor to detect obstacles.
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In the Bug 1 algorithm, as soon as an obstaclei is detected, the robot does a full
contour around it, starting at the hit pointHi. This full contour aims at evaluating
the point of minimum distance to the target,Li. The robot then continues the
contouring motion until reaching that point again, from where it leaves along a
straight path to the target.Li is named as the leave point. This technique is very
inefficient but guarantees that the robot will reach any reachable goal. Figure 1
represents a situation with two obstacles whereH1 andH2 are the hit points and
L1 andL2 the leave points.

Figure 1: Obstacle avoidance with Bug 1 algorithm

In the Bug 2 algorithm the obstacle contour starts at the hit pointHi but ends
whenever the robot crosses the line to the target. This defines the leave pointLi of
the obstacle boundary-following behavior. FromLi the robot moves directly to the
target. The procedure repeats if more obstacles are detected. Figure 2 represents
the path generated by Bug 2 for two obstacles.

Figure 2: Obstacle avoidance with Bug 2 algorithm

In general, Bug 2 algorithm has a shorter travel time than Bug 1 algorithm and
is more efficient specially in open spaces. However, there are situations where
it may became non optimal. In particular, the robot may be trapped in maze
structures.

The simplicity of these algorithms leads to a number of shortcomings. None of
these algorithms take robot kinematics into account which is a severe limitation,
specially in the case of non-holonomic robots. Moreover, and since only the most
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recent sensorial data is taken into account, sensor-noise has a large impact in the
robot performance.

For complete details of Bug 1 and Bug 2 see [1], [2], [8] and for extensions of
Bug 2, in particular for a description of Tangent Bug that applies as a modification
of the Bug 2 algorithm for non zero range sensors, see [9].

2:2 Potential Field Methods

Path planning using artificial potential fields is based on a simple and powerful
principle, first proposed by O. Khatib in [3]. The robot is consider as a particle
that moves immersed in a potential field generated by the goal and by the obstacles
present in the environment. The goal generates an attractive potential while each
obstacle generates a repulsive potential. A potential field can be viewed as an
energy field and so its gradient, at each point, is a force. The robot immersed in
the potential filed is subject to the action of a force that drives it to the goal (it
is the action of the attractive force that results from the gradient of the attractive
potential generated by the goal) while keeping it away from the obstacles (it is the
action of a repulsive force that is the gradient of the repulsive potential generated
by the obstacles).

The robot motion in potential field based methods can be interpreted as the
motion of a particle in a gradient vector field generated by positive and negative
electric particles. In this analogy, the robot is a positive charge, the goal is a nega-
tive charge and the obstacles are sets of positive charges. Gradients in this context
can be interpreted as forces that attract the positively charged robot particle to a
negative particle that acts as the goal. The obstacles act as positive charges that
generate repulsive forces that force the particle robot away from the obstacles.
The combination of the attractive force to the goal and the repulsive forces away
from the obstacles drive the robot in a safe path to the goal.

Potential functions can also be viewed as a landscape with mountains (gener-
ated by the obstacles) and valleys, with the lowest point of the valley representing
the robot goal. The robot follows the path along the negative gradient of the poten-
tial function which means moving downhill towards the lowest point in the valley.
With this analogy, it is clear that the robot may be trapped in local minima away
from the goal, this being a known drawback of the original version of potential
field based methods.

Let q represent the position of the robot, considered as a particle moving in
a n-dimensional spaceRn. For the sake of presentation simplicity consider the
problem applied to a point robot moving in a plane, i.e.,n = 2 and that the robot’s
pose is defined by the tupleq = (x, y).

The artificial potential field where the robot moves is a scalar functionU(q) :
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R2 −→ R generated by the superposition of attractive and repulsive potentials

U(q) = Uatt(q) + Urep(q). (1)

The repulsive potential results from the superposition of the individual repulsive
potentials generated by the obstacles, and so (1) may be written as

U(q) = Uatt(q) +
∑

i

Urepi
(q) (2)

whereUrepi
(q) represents the repulsive potential generated by obstaclei.

Consider now thatU(q) is differentiable. At eachq, the gradient of the po-
tential field, denoted by∇U(q), is a vector that points in the direction that locally
maximally increasesU(q). In the potential field based robot navigation methods,
the attractive potential is chosen to be zero at the goal and to increase as the robot
is far away from the goal and the repulsive potential, associated with each obsta-
cle, is very high (infinity) in the close vicinity of the obstacles and decreases when
the distance to the obstacle increases. Along these principles, different attractive
potentials may be chosen.

Furthermore, the force that drives the robot is the negative gradient of the
artificial potential, i.e.,

F (q) = Fatt(q) + Frep(q) = −∇Uatt(q)−∇Urep(q) (3)

The forceF (q) in (3) is a vector that points in the direction that, at eachq, locally
maximally decreases U. This force can be considered as the velocity vector that
drives the point robot.

The Attractive Potential
The usual choice for the attractive potential is the standard parabolic that

grows quadratically with the distance to the goal,

Uatt(q) =
1

2
katt d2

goal(q) (4)

wheredgoal(q) =‖ q− qgoal ‖ is the Euclidean distance of the robot (considered at
q), to the goal, atqgoal andkatt is a scaling factor. The gradient,

∇Uatt(q) = katt(q − qgoal) (5)

is a vector field proportional to the difference fromq to qgoal that points away from
qgoal. The farther away the robot is from the goal, the bigger the magnitude of the
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attractive vector field. The attractive force considered in the Potential Filed based
approach is the negative gradient of the attractive potential

Fatt(q) = −∇Uatt(q) = −katt (q − qgoal) (6)

Setting the robot velocity vector proportional to the vector field force, the
force (6) drives the robot to the goal with a velocity that decreases when the robot
approaches the goal. The force (6) represents a linear dependence towards the
goal, which means that it grows with no bound as q moves away from the goal
which may determine a fast robot velocity whenever far from theqgoal. When the
robot is far away from the goal, this force imposes that it quickly approaches the
goal, i.e., that it moves directly to the goal with a high velocity. On the contrary,
the force tends to zero, and so does the robot velocity, when the robot approaches
the goal. Therefore the robot approaches the goal slowly which is a useful feature
to reduce the overshoot at the goal.
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Figure 3: a) Attractive Potential, b) Attractive Force to the goal

Figure 3 represents the attractive potential and the negative gradient force field
for a situation where the goal at(10, 10) is represented by a mark.

The Repulsive Potential
The repulsive potential keeps the robot away from the obstacles, both those

a priori know or those detected by the robot on-board sensors. This repulsive
potential is stronger when the robot is closer to the obstacle and has a decreasing
influence when the robot is far away. Given the linear nature of the problem, the
repulsive potential results from the sum of the repulsive effect of all the obstacles,
i.e.,

Urep(q) =
∑

i

Urepi
(q) (7)

It is reasonable to consider that the influence of an obstacle is limited to the envi-
ronment space in its vicinity up to a given distance. An obstacle very far from the
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robot is not likely to repel the robot. Moreover, the magnitude of repulsive poten-
tial should increase when the robot approaches the obstacle. To account for this
effect and to the space bounded influence, a possible repulsive potential generated
by obstaclei is

Urepi
(q) =

{
1
2
kobsti

(
1

dobsti
(q)
− 1

d0

)2

if dobsti(q) < d0

0 if dobsti(q) ≥ d0

(8)

wheredobsti(q) is the minimal distance fromq to the obstaclei, kobsti is a scaling
constant andd0 is the obstacle influence threshold.

The negative of the gradient of the repulsive potential,Frepi
(q) = −∇Urepi

(q),
is given by,

Frepi
(q) =

{
kobsti

(
1

dobsti
(q)
− 1

d0

)
1

d2
obsti

(q)
q−qobst

dobsti
if dobsti(q) < d0

0 if dobsti(q) ≥ d0

(9)
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Figure 4: a) Repulsive Potential, b) Attractive+Respulsive Potential

For the environment where the goal lead to the attractive potential represented
in Figure 3, the repulsive potential for three obstacles is represented in Figure 4-a),
while the sum of the attractive and repulsive potentials is plotted at Figure 4-b).
Taking this example, it is clear that the motion of a point robot to the goal, starting
in an arbitrary position, can be viewed as the motion of a frictionless ball that is
left at the robot starting point. The ball path is along the largest negative slope to
the goal.

Advantages and Drawbacks
The potential field approach herein presented is a simple path planning tech-

nique that has an intuitive operation principle based on energy type fields. For a
static and completely known environment, the potential can be evaluated off-line
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providing the velocity profile to be applied to a point robot moving in the energy
field from a starting point to a goal. Moreover, the technique can be applied in
an on-line version that accommodates an obstacle avoidance component. The re-
pulsive potential may result from known environment obstacles present in an a
priori map or obstacles that are detected by the robot on-board sensors during its
motion.

In its simplest version the potential field based methods exhibit many short-
comings, in particular the sensitivity to local minima, that usually arise due to
the symmetry of the environment and to concave obstacles, and robot oscillatory
behavior when traversing narrow spaces.

Figure 5: Local minimum of the total potential due to a concave obstacle

Figure 5 presents a situation where the robot is attracted by the goal while
approaching a concave obstacle. When inside the concave obstacle, it happens
that in a particular position,q∗, the attractive force to the goal is symmetric to the
repulsive force due to the obstacle surfaces, this leading to a local minimum of
U(q∗), i.e.,∇U(q∗) = 0. Attraction to local minimum of the potential also arises
with non-concave obstacles as represented in Figure 6 where the total repulsive
force due to the two obstacles is symmetric to the attractive force due to the goal.

Figure 6: Local minimum of the total potential due to environment symmetry

A large number of improvements and extensions of the potential field have
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been published since the early version presented by O. Khatib in [3]. M. Khatib
and Chatila in [10] proposed an extended version of the potential field based meth-
ods, where the repulsive potential is changed in two different ways. The repulsive
force due to an obstacle is not only considered as a function of the distance to
the obstacle but also of the orientation of the robot relative to the obstacle. This
is a reasonable change since the urgency of avoiding an obstacle parallel to the
robot motion is clearly less than the one that arises when the robot moves directly
facing the obstacle. The second extension of the repulsive potential does not con-
sider the obstacles that will not closely affect the robot velocity. For example, it is
irrelevant to consider the repulsive force generated by an obstacle in the back of
the robot, when it is moving forward.

2:3 The Vector Field Histogram

The Vector Field Histogram (VFH) method, introduced by Borenstein and Ko-
rem, [4], is a real-time obstacle avoidance method that permits the detection of
unknown obstacles and avoids collisions while simultaneously steering the mo-
bile robot towards the target.

The original paper on VFH, [4], presents a good summary of the method as
follows: the VFH method uses a two-dimensional Cartesian histogram grid as a
world model. This world model is updated continuously with range data sampled
by on-board range sensors. The VFH method subsequently employs a two-stage
data-reduction process in order to compute the desired control commands for the
vehicle. In the first stage, a constant size subset of the 2D histogram grid con-
sidered around the robot’s momentary location, is reduced to a one-dimensional
polar histogram. Each sector in the polar histogram contains a value representing
the polar obstacle density in that direction. In the second stage, the algorithm se-
lects the most suitable sector from among all polar histogram sectors with a low
polar obstacle density, and the steering of the robot is aligned with that direction.

The three main steps of implementation of the VFH method are summarized:

Step 1 Builds a 2D Cartesian histogram grid of obstacle representation,

Step 2 From the previous 2D histogram grid, considers an active window around
the robot, and filters that 2D active grid onto a 1D polar histogram,

Step 3 Calculates the steering angle and the velocity controls from the 1D polar
histogram, as a result of an optimization procedure.

Step 1 of VHF
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Step 1 of VHF generates a 2D Cartesian coordinate from each range sensor
measurement and increments that position in a 2D Cartesian histogram grid map
C. The construction of this grid maps does not depend on the specific sensor
used for obstacle detection, in particular ultrasound and laser range sensors may
be used.

For ultrasound sensors and for each range reading, the cell that lies on the
acoustic axis and corresponds to the measured distanced is incremented (see Fig-
ure 7), increasing the certainty value (CV) of the occupancy of that cell. This is
the Histogrammic in Motion Mapping (HIMM) algorithm presented in [11].

Figure 7: Construction of the 2D Histogram grid map. Reproduced from [4]

Figure 7 illustrates the cells certainty value update along the movement of a
robot equipped with ultrasonic sensors. It is clear that, for each range reading,
only one cell is updated. The HIMM provides a histogramic pseudo-probability
distribution by continuous and rapid sampling the sensors while the robot is mov-
ing. This is different from the certainty grid maps proposed by Moravec and Elfes
in [12], [13], that project a probability profile onto all the cells affected by a range
reading. For an ultrasound sensor these cells are contained in a cone that corre-
sponds to the main lobe of the sensor radiation diagram.

Step 2 of VHF
The next step of VFH, maps the 2D Cartesian histogram grid mapC onto

a 1D structure. To preserve and isolate the information about the local obstacle
information rather than using the entire grid mapC, the 2D grid used in this
step is restricted to a window ofC, called the active window, denoted byC∗,
with constant dimensions, centered on the Vehicle Central Point (VCP) and that,
consequently, moves with the robot.C∗ represents a local map of the environment
around the robot.

c© 2005, Maria Isabel Ribeiro



11 Navigation/Collision Avoidance

Figure 8: Mapping of active cells onto the polar histogram. Reproduced from [4]

The active gridC∗ is mapped onto a 1D structure known as a polar histogram,
H, that comprisesn angular sections each with widthα. Figure 8 illustrates the
cell occupancy ofC∗, the active window around the robot, and represents the
angular sectors considered for the evaluation of the 1D polar histogram.

Figure 9: a) 1D polar histogram of obstacle occupancy around the robot. b) Polar
histogram shown in polar form overlapped withC∗. Both Reproduced from [4]

Thex-axis of the polar histogram represents the angular sector where the ob-
stacles were found and they-axis represents the probabilityP that there is really
an obstacle in that direction based on the occupancy grid’s cell values ofC∗. Fig-
ure 9-a) represents the 1D polar histogram with obstacle density for a situation
where the robot has three obstacles,A, B andC in its close vicinity. In Figure 9-
b) the previously obtained 1D histogram is shown in polar form overlapped with
the referred obstacles.

Step 3 of VHF
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The step 3 of VFH evaluates the required steering direction for the robot that
corresponds to a given sector of the 1D histogram and, simultaneously, adapts the
robot velocity according to the obstacle polar density.

A typical polar histogram contains ”peaks” or sectors with a high polar density
and ”valleys”, i.e., sectors with low polar density. To evaluate the steering direc-
tion towards the target goal, all openings, i.e., valleys large enough for the vehicle
to pass through, are identified as candidate valleys. Valleys are classified as wide
or narrow according to the number of sectors below the threshold. If the number
of consecutive sectors below the threshold is greater thanSmax the valley is wide,
while it is classified as narrow if that number is less thanSmax. The parameter
Smax is set according to the robot dimensions and kinematic constraints.

From the set of wide valleys, VHF chooses the one that minimizes a cost
function that accounts for:

• the alignment of the robot to the target,

• the difference between the robot current direction and the goal direction,

• the difference between the robot previously selected direction and the new
robot direction.

If the threshold is set too high, the robot may be too close to an obstacle, and
moving too quickly in order to prevent a collision. On the other hand, if set too
low, VHF can miss some valid candidate valleys. As stated in [4] the VHF needs
a fine-tuned threshold only for the most challenging applications, for example,
travel at high speed and in densely cluttered environments. Under less demanding
conditions the system performs well even with an imprecisely set threshold. One
way to optimize performance is to use an adaptive threshold. Besides the robot
steering direction, the VFH also sets the robot speed according to the obstacle
polar density, [4].

Advantages and Drawbacks
The Vector Field Histogram overcomes some of the limitations exhibited by

the potential field methods. In fact, the influence of bad sensor measurements
is minimized because sensorial data is averaged out onto an histogram grid that
is further processed. Moreover, instability in travelling down a corridor, present
when using the potential field method, is eliminated because the polar histogram
varies only slightly between sonar readings. In the VFH there is no repulsive nor
attractive forces and thus the robot cannot be trapped in a local minima, because
VFH only tries to drive the robot through the best possible valley, regardless if it
leads away from the target.

Enhanced versions of the VHF method are presented in [14] and [15].
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