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Motivation

• Optimal solutions for the decision problem, 
particularly in multi-agent systems, are sometimes 
not obvious to the programmer. 

• So... Multi-agent reinforcement learning provides a 
way of programming agents without the complete 
knowledge of the task. 

• But... Reinforcement Learning for the single-agent 
domain can’t always be used in a multi-agent 
scenario.

• So... there is the need to study specific 
reinforcement learning techniques in the presence 
of other agents.



INSTITUTO DE 
SISTEMAS E 
ROBÓTICA

Outline

• Background

• Best-Response Learners

• Equilibrium Learners

• Other Approaches

• Conclusions



INSTITUTO DE 
SISTEMAS E 
ROBÓTICA

Outline

• Background

• Best-Response Learners

• Equilibrium Learners

• Other Approaches

• Conclusions



INSTITUTO DE 
SISTEMAS E 
ROBÓTICA

Markov Decision Processes (Bellman, 57)

• Single-agent / multi-state framework with no 
memory: Markov Property.

• An Optimality Concept: maximizing expected 
reward.

• Usual Formulation: discounted reward over time

• State Values:

• Reinforcement Learning to find optimal policy.

• Q-learning (Watkins,89) is a possible algorithm: 

stochastic games (Shapley, 1953) and the decision
problems arising from it.

The objective of this work is to provide a survey
of the basic concepts, results and algorithms in
multi-agent learning. It has the following outline:
Section 2 describes some background concepts
for the multi-agent learning framework. Initially,
it addresses Markov decision processes and ma-
trix games as a motivation to stochastic games,
the last background framework analyzed. Section
3 presents some foundational methods used to
solve stochastic games. It focus on two main ap-
proaches, best-response learners and equilibrium
learners, and then discusses some other paths.
Finally, Section 4 tries to draw some conclusions
on the applicability of the presented methods and
point some possible research directions in multi-
agent reinforcement learning.

2. BACKGROUND CONCEPTS

2.1 Markov Decision Processes

Markov Decision Processes (Bellman, 1957; Bert-
sekas, 1995; Sutton and Barto, 1998) are, in fact,
the foundation for much of the research on agent
control. They can be defined as a tuple (S, A, T,R)
where:

• A is an action set.
• S is a state space.
• T : S×A×S −→ [0, 1] is a transition function

defined as a probability distribution over the
states.

• R : S ×A× S −→ R is a reward function.

The task of deciding which action to choose in
each state is done by a policy function defined as
π : S → PD(A) 1 .

The goal of an agent living in an environment that
can be modeled as a MDP is to maximize the
expected reward over time, which on itself aggre-
gates a myriad of formulations. One of the most
common criteria is the Infinite-horizon discounted
reward model, which sets the goal on maximizing
total expected reward but favouring short-term
actions by a discount factor γ. In other words,
finding π∗ that maximizes:

V π(s) = E

{
∞∑

k=0

γkrt+k+1

∣∣∣st = s, π

}

=
∑

a

π(s, a)
∑

s′

T (s, a, s′)
[
R(s, a, s′) + γV π(s′)

]

(1)

where V π(s) are the state values for policy π.

1 PD(A) denotes the class of probability distributions over
the action space A.

It can be shown (Sutton and Barto, 1998) that
there is always at least one undominated deter-
ministic solution in a finite MDP, which corre-
sponds to choosing the greedy action. Knowing
that, a recursive equation can be derived (Sutton
and Barto, 1998) relating state-values for greedy
policies. It is generally know as the Bellman opti-
mality equation:

V ∗(s) = max
a

∑

s′

T (s, a, s′)
[
R(s, a, s′) + γV ∗(s′)

]
(2)

A similar path could be taken in order to derive
the optimality equation to state-action values,
which represent the expected reward in state s
when action a is taken, leading to:

Q∗(s, a) =
∑

s′

T (s, a, s′)
[
R(s, a, s′) + γ max

a′
Q(s′, a′)∗

]

(3)

Most dynamic programming and reinforcement
learning algorithms are based on this equation,
as it makes the decision task easy by evaluating
the quality of actions in each state. Particularly,
Q-learning (Watkins, 1989; Watkins and Dayan,
1992) estimates the Q-values iteratively using an
update rule based on (3).

Q(s, a) ← Q(s, a)+α
(
r+γ max

a′
Q(s′, a′)−Q(s, a)

)

(4)

2.2 Matrix Games

The concept of matrix games (MG) or strategic
games (von Neumann and Morgenstern, 1947;
Owen, 1995) is a simple framework to deal with
single-shot games, that is, games where there
are multiple players but just one state with an
associated reward structure. Formally, they can
be defined as a tuple (n, A1...n, R1...n) where:

• n is the number of agents.
• Ai is the action set for player i (A = A1 ×
· · ·×An is the joint action set)

• Ri : A → R is the reward function of player
i

One important characteristic of MGs is the fact
that each agent’s reward function depends on the
actions of all the players and not just its own
actions.

Games like the Prisoner’s Dilemma (Owen, 1995)
are examples of two-person matrix games (where
n = 2).

In this framework, the concept of strategy plays a
similar role to that of policy in MDPs. A strategy
σi ∈ PD(Ai) defines the way agent i decides on
a Matrix Game. A collection of n strategies, one
for each of the agents, is called a joint strategy
and it can be written σ = 〈σi,σ−i〉, where the

stochastic games (Shapley, 1953) and the decision
problems arising from it.

The objective of this work is to provide a survey
of the basic concepts, results and algorithms in
multi-agent learning. It has the following outline:
Section 2 describes some background concepts
for the multi-agent learning framework. Initially,
it addresses Markov decision processes and ma-
trix games as a motivation to stochastic games,
the last background framework analyzed. Section
3 presents some foundational methods used to
solve stochastic games. It focus on two main ap-
proaches, best-response learners and equilibrium
learners, and then discusses some other paths.
Finally, Section 4 tries to draw some conclusions
on the applicability of the presented methods and
point some possible research directions in multi-
agent reinforcement learning.

2. BACKGROUND CONCEPTS

2.1 Markov Decision Processes

Markov Decision Processes (Bellman, 1957; Bert-
sekas, 1995; Sutton and Barto, 1998) are, in fact,
the foundation for much of the research on agent
control. They can be defined as a tuple (S, A, T,R)
where:

• A is an action set.
• S is a state space.
• T : S×A×S −→ [0, 1] is a transition function

defined as a probability distribution over the
states.

• R : S ×A× S −→ R is a reward function.

The task of deciding which action to choose in
each state is done by a policy function defined as
π : S → PD(A) 1 .

The goal of an agent living in an environment that
can be modeled as a MDP is to maximize the
expected reward over time, which on itself aggre-
gates a myriad of formulations. One of the most
common criteria is the Infinite-horizon discounted
reward model, which sets the goal on maximizing
total expected reward but favouring short-term
actions by a discount factor γ. In other words,
finding π∗ that maximizes:

V π(s) = E

{
∞∑

k=0

γkrt+k+1

∣∣∣st = s, π

}

=
∑

a

π(s, a)
∑

s′

T (s, a, s′)
[
R(s, a, s′) + γV π(s′)

]

(1)

where V π(s) are the state values for policy π.

1 PD(A) denotes the class of probability distributions over
the action space A.

It can be shown (Sutton and Barto, 1998) that
there is always at least one undominated deter-
ministic solution in a finite MDP, which corre-
sponds to choosing the greedy action. Knowing
that, a recursive equation can be derived (Sutton
and Barto, 1998) relating state-values for greedy
policies. It is generally know as the Bellman opti-
mality equation:

V ∗(s) = max
a

∑

s′

T (s, a, s′)
[
R(s, a, s′) + γV ∗(s′)

]
(2)

A similar path could be taken in order to derive
the optimality equation to state-action values,
which represent the expected reward in state s
when action a is taken, leading to:

Q∗(s, a) =
∑

s′

T (s, a, s′)
[
R(s, a, s′) + γ max

a′
Q(s′, a′)∗

]

(3)

Most dynamic programming and reinforcement
learning algorithms are based on this equation,
as it makes the decision task easy by evaluating
the quality of actions in each state. Particularly,
Q-learning (Watkins, 1989; Watkins and Dayan,
1992) estimates the Q-values iteratively using an
update rule based on (3).

Q(s, a) ← Q(s, a)+α
(
r+γ max

a′
Q(s′, a′)−Q(s, a)

)

(4)

2.2 Matrix Games

The concept of matrix games (MG) or strategic
games (von Neumann and Morgenstern, 1947;
Owen, 1995) is a simple framework to deal with
single-shot games, that is, games where there
are multiple players but just one state with an
associated reward structure. Formally, they can
be defined as a tuple (n, A1...n, R1...n) where:

• n is the number of agents.
• Ai is the action set for player i (A = A1 ×
· · ·×An is the joint action set)

• Ri : A → R is the reward function of player
i

One important characteristic of MGs is the fact
that each agent’s reward function depends on the
actions of all the players and not just its own
actions.

Games like the Prisoner’s Dilemma (Owen, 1995)
are examples of two-person matrix games (where
n = 2).

In this framework, the concept of strategy plays a
similar role to that of policy in MDPs. A strategy
σi ∈ PD(Ai) defines the way agent i decides on
a Matrix Game. A collection of n strategies, one
for each of the agents, is called a joint strategy
and it can be written σ = 〈σi,σ−i〉, where the
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Matrix Games (von Neumman, 47)

• Matrix Games provide a multi-agent / single-state 
framework.

• Optimality Concepts in Matrix Games.

• Best-Response Function: set of optimal strategies given the 
other agents current strategies.

• Nash Equilibria (Nash, 50): All agents are using best-
response strategies.

• All Matrix Games have at least one Nash Equilibrium

notation σ−i is used to refer to a joint strategy
for all players except for player i.

An individual strategy is said to be a best-response
strategy if, for a given σ−i played by all other
players, it achieves the highest possible reward.
Usually the set of all best-response strategies of
player i is represented by BRi : PD(A−i) →
2PD(Ai), which is usually called the best-response
function for player i. σ∗i ∈ BRi(σ−i) if and only
if:

∀σi∈PD(Ai) Ri(〈σ∗i , σ−i〉) ≥ Ri(〈σi, σ−i〉) (5)

A Nash equilibrium is a collection of strategies,
one for each player, that are best response strate-
gies, which means that none of the players can do
better by changing strategy, if all others continue
to follow the equilibrium: ∀i=1...n σi ∈ BRi(σ−i).
An important characteristic of Matrix Games is
that all of them have at least one Nash equilib-
rium.

A usual way of classifying Matrix Games is the
following:

• Zero-sum games are two-player games (n =
2) where the reward for one of the players is
always symmetric to the reward of the other
player 2 .

This kind of games only have one equilib-
rium 3 , which can be found using a minimax
approach, formulated as a linear program
(Owen, 1995).

• Team games have a general number of play-
ers but their reward is the same for every
joint action.

They have trivial solutions: the payoffs are
the same for all agents in the game and, in
this situation, finding the a Nash equilibrium
can be achieved just by finding the joint
action corresponding to the higher payoff.

• General-sum games are all types of matrix
games. However, the term is mainly used
when the game can not be classified as a zero-
sum one.

For general-sum games it is not so easy
to compute the Nash equilibrium although a
quadratic programming algorithm is enough
when the game has only two-players as ex-
plained in (von Stengel, 1999; Koller et al.,
1996). Nevertheless, some games may have
just one equilibrium, as is the case with the
Prisoner’s Dilemma.

The kind of equilibrium in zero-sum games is
generally called a adversarial equilibrium, which
has the property that no player is hurt by changes
in all the other players strategies:

2 Actually, this type of games is equivalent to constant-
sum games, where the sum of both player rewards is always
constant for every joint action.
3 They can have more but they are interchangeable.

∀σ−i∈PD(A−i) Ri(〈σ∗i , σ∗−i〉) ≤ Ri(〈σ∗i , σ−i〉) (6)

and, so, the equilibrium value acts as a worst-case
optimal.

On the other hand, another important kind of
equilibria are called a coordination equilibrium,
which have the property of being maximal for all
the agents:

∀σ−i∈PD(A−i) R(σ∗i ) = max
a∈A

Ri(a) (7)

Team-games always have at least one coordination
equilibria.

2.3 Stochastic Games

Stochastic games (SG) (Shapley, 1953) can be
thought as an extension of matrix games and/or
Markov decision processes in the sense that they
deal with multiple agents in a multiple state
situation. Formally, they can be defined as a tuple
(n, S,A1,...,n, T, R1,...,n) where:

• n represents the number of agents
• S the state set
• Ai the action set of agent i and A = A1 ×

· · ·×An the joint action set.
• T : S×A×S → [0, 1] is a transition function

which depends on the actions of all players.
• Ri : S × A × S → R is a reward function

representing the expected value of the next
reward, for agent i.

One can think of a SG as a succession of MGs,
one for every state. In fact, SGs are a superset
of the two frameworks previously presented – a
MDP can be thought as a stochastic game when
n = 1 and a MG can be thought as a stochastic
game when |S| = 1.

The notion of policy can be extended from MDPs
and combined with the notion of strategy from
matrix games. In fact, a policy πi : S → PD(Ai)
is still a collection of probability distributions over
the available actions, one for each state, but now
a different policy must be defined for each agent.
The collection of policies, one for each agent, is
called a joint policy and it can be written π =
〈πi,π−i〉 where π−i refers to a joint policy for all
players except for i.

As with MDPs, the goal of an agent in a stochastic
game is to maximize its expected reward over
time. Again, the most common model is the
infinite-horizon discounted reward model, leading
to the following definition of state values:

V π
i (s) =

∑

a

π(s, a)
∑

s′

T (s, a, s′)
[
Ri(s, a, s′) + γV π

i (s′)
]

(8)

As for Q-values, they are defined as follows:

Qπ
i (s, a) =

∑

s′∈S

T (s, a, s′)
[
Ri(s, a, s′) + γV π

i (s′)
]

(9)
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Game Classification: Zero-sum

• 2 players with opposing objectives. 

• There is only one Nash equilibrium

• Minimax to find it.

Nash

R1

!(a1)

!(a2)

(a) Reward function for player 1

Nash

R2

!(a1)

!(a2)

(b) Reward function for player 2

Figure 3.1: Rewards and Nash equilibria for a zero-sum game

For this particular game the equilibrium occurs when π1 = {0.540, 0.460}
and π2 = {0.385, 0.615}.

a2 b2

a1 (3 , -3) (-5 , 5)
b1 (-3 , 3) (2 , -2)

Table 3.4: A zero-sum game

The second kind of games, called team-games also have trivial solutions:
the payoffs are the same for all agents in the game and, in this situation,
finding the a Nash equilibrium can be achieved just by finding the joint
action corresponding to the higher payoff. As in MDPs, the strategy will be
greedy, and if more than one greedy joint action exists, than all probability
distributions over the greedy joint actions are Nash equilibria. Figure 3.2
represents the equilibria for a team game, particularly the one represented
in Table 3.3.

For general-sum games it is not so easy to compute the Nash equilibrium
although a quadratic programming algorithm is enough when the game has
only two-players as explained in (von Stengel, 1999; Koller et al., 1996).
Nevertheless, some games may have just one equilibrium, as is the case with
the Prisoners Dilemma – the equilibrium is even deterministic for both play-
ers. The representation of the reward function for the Prisoners Dilemma
matrices represents in Table 3.2 can be seen in Figure 3.3.

The kind of equilibrium represented in Figure 3.1 is generally called a
adversarial equilibrium, which has the property that no player is hurt by

29
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Two-person Zero-Sum Games

• Characteristics:

• Two opponents play against each other.

• Symmetrical rewards (always sum zero).

• Usually only one equilibrium...

• ... and if more exist they are interchangeable!

• Minimax to find an equilibrium:

• Formulated as a Linear Program.

• Solution in the strategy space: simultaneous playing 
invalidates deterministic strategies.

V π(s) = Eπ

{ ∞∑

k=0

γkrt+k+1

∣∣∣ st = s,π

}

Qπ(s, a) = Eπ

{ ∞∑

k=0

γkrt+k+1

∣∣∣ st = s, at = a,π

}

V π(s) =
∑

a

π(s, a)
∑

s′

T (s, a, s′) [R(s, a, s′) + γV π(s′)]

V ∗(s) = max
a

∑

s′

T (s, a, s′) [R(s, a, s′) + γV ∗(s′)]

Vk+1(s) ← max
a

∑

s′

T (s, a, s′) [R(s, a, s′) + γVk(s′)]

σi ∈ BR(σ−i)

∀i σi ∈ BR(σ−i)

V ∗(s) = max
π∈PD(A)

min
o∈O

∑

a∈A

π(a)Q(s, a, o)

Q(s, a, o) =
∑

s′

R(s, a, o, s′) + γT (s, a, o, s′)V ∗(s′)

max
σ∈PD(A)

min
o∈O

∑

a∈A

σ(a)R(a, o)

V k+1(s) ← max
π∈PD(A)

min
o∈O

∑

a∈A

π(a)Qk+1(s, a, o)

Qk+1(s, a, o) ←
∑

s′

R(s, a, o, s′) + γT (s, a, o, s′)V k(s′)

Algorithm 1 Transition Rules for Stochastic Game

S ← State (which is a list of players)
A← Action (one action for each player)

for all p ∈ S and a ∈ A do
if a is attack or defend then
change role of p

end if
end for

if no player has ball then
n← number of players with a = get-ball
with probability 1

n one player gets ball
else

c← Carrier of the ball
if c has a = block then
with probability 0.5 c loses ball

else if c has a = shoot then
t← team of c
c loses ball
if c has Attacker role then

attackFactor ← 0.8
else

attackFactor ← 0.2
end if
k ← number of Attackers not of t doing block
m← number of Defenders not of t doing block
defenseFactor ← 0.4×m + 0.1× k
if defenseFactor < attackFactor then
Team t scores a GOAL

end if
else
Do nothing

end if
end if
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Game Classification: Team

• N players with the same objective. 

• Nash equilibria are deterministic.

• Just look for higher payoffs.

Nash

Nash

R1

!(wait1)

!(wait2)

(a) Reward function for player 1

Nash

Nash

R2

!(wait1)

!(wait2)

(b) Reward function for player 2

Figure 3.2: Rewards and Nash equilibria for a team game

Nash

R1

!(tell2)
!(tell1)

(a) Reward function for player 1

Nash

R2

!(tell2)!(tell1)

(b) Reward function for player 1

Figure 3.3: Rewards and Nash equilibria for a version of the prisoner’s
dilemma

30
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Game Classification: General-sum

• All kinds of games. 

• Several Nash equilibria requiring complex solutions.

• With 2 players it is possible to use quadratic programming.

Nash

Nash

R1

!(wait1)

!(wait2)

(a) Reward function for player 1

Nash

Nash

R2

!(wait1)

!(wait2)

(b) Reward function for player 2

Figure 3.2: Rewards and Nash equilibria for a team game

Nash

R1

!(tell2)
!(tell1)

(a) Reward function for player 1

Nash

R2

!(tell2)!(tell1)

(b) Reward function for player 1

Figure 3.3: Rewards and Nash equilibria for a version of the prisoner’s
dilemma

30
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Stochastic Games (Shapley, 53)

• Multiple-state / Multiple-agent environment. Like an 
extension of MDPs and MGs.

• Markovian but not from each player’s point of view.

• Optimality concepts in Stochastic Games:

• The discounted reward over time is usually considered, as 
in Markov Decision Processes.

• Best-response function: defined for policies with the state 
values as reference.

• Nash equilibria: All players are using best-response policies.

notation σ−i is used to refer to a joint strategy
for all players except for player i.

An individual strategy is said to be a best-response
strategy if, for a given σ−i played by all other
players, it achieves the highest possible reward.
Usually the set of all best-response strategies of
player i is represented by BRi : PD(A−i) →
2PD(Ai), which is usually called the best-response
function for player i. σ∗i ∈ BRi(σ−i) if and only
if:

∀σi∈PD(Ai) Ri(〈σ∗i , σ−i〉) ≥ Ri(〈σi, σ−i〉) (5)

A Nash equilibrium is a collection of strategies,
one for each player, that are best response strate-
gies, which means that none of the players can do
better by changing strategy, if all others continue
to follow the equilibrium: ∀i=1...n σi ∈ BRi(σ−i).
An important characteristic of Matrix Games is
that all of them have at least one Nash equilib-
rium.

A usual way of classifying Matrix Games is the
following:

• Zero-sum games are two-player games (n =
2) where the reward for one of the players is
always symmetric to the reward of the other
player 2 .

This kind of games only have one equilib-
rium 3 , which can be found using a minimax
approach, formulated as a linear program
(Owen, 1995).

• Team games have a general number of play-
ers but their reward is the same for every
joint action.

They have trivial solutions: the payoffs are
the same for all agents in the game and, in
this situation, finding the a Nash equilibrium
can be achieved just by finding the joint
action corresponding to the higher payoff.

• General-sum games are all types of matrix
games. However, the term is mainly used
when the game can not be classified as a zero-
sum one.

For general-sum games it is not so easy
to compute the Nash equilibrium although a
quadratic programming algorithm is enough
when the game has only two-players as ex-
plained in (von Stengel, 1999; Koller et al.,
1996). Nevertheless, some games may have
just one equilibrium, as is the case with the
Prisoner’s Dilemma.

The kind of equilibrium in zero-sum games is
generally called a adversarial equilibrium, which
has the property that no player is hurt by changes
in all the other players strategies:

2 Actually, this type of games is equivalent to constant-
sum games, where the sum of both player rewards is always
constant for every joint action.
3 They can have more but they are interchangeable.

∀σ−i∈PD(A−i) Ri(〈σ∗i , σ∗−i〉) ≤ Ri(〈σ∗i , σ−i〉) (6)

and, so, the equilibrium value acts as a worst-case
optimal.

On the other hand, another important kind of
equilibria are called a coordination equilibrium,
which have the property of being maximal for all
the agents:

∀σ−i∈PD(A−i) R(σ∗i ) = max
a∈A

Ri(a) (7)

Team-games always have at least one coordination
equilibria.

2.3 Stochastic Games

Stochastic games (SG) (Shapley, 1953) can be
thought as an extension of matrix games and/or
Markov decision processes in the sense that they
deal with multiple agents in a multiple state
situation. Formally, they can be defined as a tuple
(n, S,A1,...,n, T, R1,...,n) where:

• n represents the number of agents
• S the state set
• Ai the action set of agent i and A = A1 ×

· · ·×An the joint action set.
• T : S×A×S → [0, 1] is a transition function

which depends on the actions of all players.
• Ri : S × A × S → R is a reward function

representing the expected value of the next
reward, for agent i.

One can think of a SG as a succession of MGs,
one for every state. In fact, SGs are a superset
of the two frameworks previously presented – a
MDP can be thought as a stochastic game when
n = 1 and a MG can be thought as a stochastic
game when |S| = 1.

The notion of policy can be extended from MDPs
and combined with the notion of strategy from
matrix games. In fact, a policy πi : S → PD(Ai)
is still a collection of probability distributions over
the available actions, one for each state, but now
a different policy must be defined for each agent.
The collection of policies, one for each agent, is
called a joint policy and it can be written π =
〈πi,π−i〉 where π−i refers to a joint policy for all
players except for i.

As with MDPs, the goal of an agent in a stochastic
game is to maximize its expected reward over
time. Again, the most common model is the
infinite-horizon discounted reward model, leading
to the following definition of state values:

V π
i (s) =

∑

a

π(s, a)
∑

s′

T (s, a, s′)
[
Ri(s, a, s′) + γV π

i (s′)
]

(8)

As for Q-values, they are defined as follows:

Qπ
i (s, a) =

∑

s′∈S

T (s, a, s′)
[
Ri(s, a, s′) + γV π

i (s′)
]

(9)

and one thing that is visible from the equations is
that both Q-values and state values for one agent
depend on the actions of all the others.

As in matrix games, the concept of optimal policy
for one player of the game does not apply because
the quality of a player’s policy cannot be com-
puted independently of the policies of the other
players. But it still makes sense to define the same
kind of concepts as for matrix game, namely the
concept of best-response function and the concept
of Nash equilibrium.

A best-response policy for player i is one that
is optimal with respect to some joint policy of
the other players. The best-response function for
player i is BRi : S×PD(A−i)→ 2S×PD(Ai), and
π∗i ∈ BRi(π−i) if and only if:

∀πi∈S×PD(Ai), ∀s∈S V
〈π∗i ,π−i〉
i (s) ≥ V

〈πi,π−i〉
i (s)

(10)

A Nash equilibrium, in the context of stochastic
games, is a collection of policies, one for each
player, so that all of this policies are best-response
policies and no player can do better by changing
its policy: πi ∈ BRi(π−i), for all agents.

The classification of SGs is similar to the one of
MGs. The difference is that for a stochastic game
to be a zero-sum game, all of the states must
define a zero-sum matrix game and for it to be
classified as a team game, all of the states must
define team matrix games. The ones that do not
fall in any of these categories are generally called
general-sum games.

When the policies of all but one of the agents
are stationary, the stochastic game reduces to a
MDP. In fact, all the other agents do is defining
the transition probabilities and reward structure
for the equivalent MDP. In this situation, the
methods suited for learning in MDPs could be
applied without any loss of convergence.

3. LEARNING METHODS

3.1 Best-Response Learners

This class of methods are not specifically con-
cerned with learning an equilibrium and just try
to learn a policy that is optimal with respect to
the policies of the other players. The advantage
of not trying to learn the equilibrium is that the
other players may be playing policies that are
not best-response and, in this case, the agent can
take advantage of that fact and try to obtain a
higher return that the one that the equilibrium
guarantees. .

3.1.1. MDP methods. As it was observed previ-
ously, a stochastic game is equivalent to a Markov

decision process from the point of view of one
agent when the other agents are playing station-
ary policies. In this case, any algorithm that learns
the optimal policy for a MDP is equally suited for
a SG. Some applications of MDP methods, like
Q-learning, to a multi-agent domain have been
proposed and not without success (Tan, 1993; Sen
et al., 1994).

Unfortunately, assuming that the other agents are
not learning is not very realistic. Usually the other
agents are also trying to maximize their reward
and they cannot be exploited using deterministic
policies, which are the ones most MDP methods
find.

3.1.2. Joint-action Learners and Opponent Mod-
elling. Joint-action learners (JALs) (Claus and
Boutilier, 1998) are intended to solve iterated
team matrix games, where the reward function is
the same for all the involved agents and there is
only one state which is played indefinitely. They
differ from purely MDP methods in that they
learn Q-values based on the joint-actions rather
than just their own actions 4 .

So, from the point of view of the learning method
there is no difference between Q-learning and
JALs, except for the action space. The problem
arises when deciding which action to take: there
is no guarantee that the other players are at the
same learning stage, or even if they are learning
at all. That is why (Claus and Boutilier, 1998)
proposed a value function to be used instead of
the Q-value:

EV (ai) =
∑

a−i∈A−i

Q(〈ai, a−i〉)
∏

j &=i

π̂j(a−i[j]) (11)

where π̂j refers to a estimative of the policy being
followed by player j. This estimator is obtained
just by dividing the number of times agent j chose
a given action by the number of trials.

Opponent Modelling (Uther and Veloso, 1997) is
similar to JALs but it was initially applied to the
context of zero-sum games. It regards the other
agents as one massive opponent with the ability
to play joint actions and maintains statistics over
them, which for the algorithm is in all equivalent.
The opponent joint-policy estimator is:

π̂−i(a−i) =
n(s, a−i)

n(s)
(12)

where n(s, a−i) represents the number of times
joint action (of the other players) a−i has been
chosen in state s and n(s) represents the number
of visits to a state.

4 It is assumed that they have full observability of the
state and of the other agents’ actions.
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Solving Stochastic Games

• Usually, each algorithm solves one type of game.

• A common approach:

Dynamic 
Programming

Algorithm

Matrix 
Solver
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Minimax Value Iteration

• Suitable for (two-person) zero-sum stochastic 
games.

• Algorithm expression (based on the Bellman 
optimality equation for the zero-sum SG)

• See [Owen, 95] for a convergence proof.

• Same as Minimax-Q learning algorithm [Littman, 94].

Value Iteration 
Algorithm

Minimax Solver in 
each State

V π(s) = Eπ

{ ∞∑

k=0

γkrt+k+1

∣∣∣ st = s,π

}

Qπ(s, a) = Eπ

{ ∞∑

k=0

γkrt+k+1

∣∣∣ st = s, at = a,π

}

V π(s) =
∑

a

π(s, a)
∑

s′

T (s, a, s′) [R(s, a, s′) + γV π(s′)]

V ∗(s) = max
a

∑

s′

T (s, a, s′) [R(s, a, s′) + γV ∗(s′)]

Vk+1(s) ← max
a

∑

s′

T (s, a, s′) [R(s, a, s′) + γVk(s′)]

σi ∈ BR(σ−i)

∀i σi ∈ BR(σ−i)

V ∗(s) = max
π∈PD(A)

min
o∈O

∑

a∈A

π(a)Q(s, a, o)

Q(s, a, o) =
∑

s′

R(s, a, o, s′) + γT (s, a, o, s′)V ∗(s′)

max
σ∈PD(A)

min
o∈O

∑

a∈A

σ(a)R(a, o)

V k+1(s) ← max
π∈PD(A)

min
o∈O

∑

a∈A

π(a)Qk+1(s, a, o)

Qk+1(s, a, o) ←
∑

s′

R(s, a, o, s′) + γT (s, a, o, s′)V k(s′)

Algorithm 1 Transition Rules for Stochastic Game

S ← State (which is a list of players)
A← Action (one action for each player)

for all p ∈ S and a ∈ A do
if a is attack or defend then
change role of p

end if
end for

if no player has ball then
n← number of players with a = get-ball
with probability 1

n one player gets ball
else

c← Carrier of the ball
if c has a = block then
with probability 0.5 c loses ball

else if c has a = shoot then
t← team of c
c loses ball
if c has Attacker role then

attackFactor ← 0.8
else

attackFactor ← 0.2
end if
k ← number of Attackers not of t doing block
m← number of Defenders not of t doing block
defenseFactor ← 0.4×m + 0.1× k
if defenseFactor < attackFactor then
Team t scores a GOAL

end if
else
Do nothing

end if
end if
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Stationary Opponents

• The game reduces to an MDP with:

computed independently of the policies of the other players. But it still
makes sense to define the same kind of concepts as for matrix game, namely
the concept of best-response function and the concept of Nash equilibrium.

In the context of SGs, a best-response policy for player i is one that is
optimal with respect to some joint policy off the other players. The notation
for that is:

πi ∈ BRi(π−i) (3.9)

and, as expected, BRi : S × PD(Ai) → 2S×PD(Ai) is called the best
response function3 for player i. π∗i ∈ BRi(πi) if and only if:

∀πi∈S×PD(Ai),∀s ∈ S V
〈π∗i ,π−i〉
i (s) ≥ V

〈πi,π−i〉
i (s) (3.10)

A Nash equilibrium, in the context of stochastic games, is a collection
of policies, one for each player, so that all of this policies are best-response
policies and no player can do better by changing its policy. Formally:

∀i=1...n πi ∈ BRi(π−i) (3.11)

The classification of SGs is similar to the one of MGs. The difference
is that for a stochastic game to be a zero-sum game, all of the states must
define a zero-sum matrix game and for it to be classified as a team game,
all of the states must define team matrix games. The one that do not fall
in any of these categories are generally called general-sum games.

Another class of stochastic games classic in game theory is iterated
games. These are games with just one state (hence, only one reward ma-
trix) but in which the game is repeated for a number of times or ad eternum.
Some methods are concerned with learning in this type of games exactly.

Playing against stationary policies

When the policies of all but one of the agents are stationary, the stochastic
game reduces to a MDP. In fact, all the other agents do is defining the tran-
sition probabilities and reward structure for the equivalent MDP. Supposing
that only agent i is learning policy πi and the joint policy of the other agents
π−i is fixed, the parameters of the MDP are:

• SMDP = SSG

• AMDP = ASG
i

3S × PD(Ai) represents the set of all possible markovian policies for player i and
2S×PD(Ai) represents its power set.
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• TMDP (s, ai, s′) =
∑

a−i∈ASG
−i

π−i(s, a−i) TSG(s, 〈ai, a−i〉, s′)

• RMDP (s, ai, s′) =
∑

a−i∈ASG
−i

π−i(s, a−i) TSG(s, 〈ai, a−i〉, s′) RSG(s, 〈ai, a−i〉, s′)

In this situation, its clear a method like Q-learning or Sarsa will be
enough to converge to the best-response (and optimal) policy to other players
joint policy, without having to know the actions of the others at each step.

The next two sections will survey some algorithms that try to solve
stochastic games. These can be divided in best-response learners, that try
to learn a best-response policy to the joint policy of the other players, and
equilibrium learners, that specifically try to learn equilibrium policies, re-
gardless of the joint policy of the other agents.

3.3 Best-Response Learners

This class of methods are not specifically concerned with learning an equilib-
rium and just try to learn a policy that is optimal with respect to the policies
of the other players. The advantage of not trying to learn the equilibrium
is that the other players may be playing policies that are not best-response
and, in this case, the agent can take advantage of that fact and try to ob-
tain a higher return that the one that the equilibrium guarantees. However,
against an agent without a stationary policy, or one that does not converge
to a stationary policy, the methods may have trouble quickly adapting to
what the other is doing and the optimal is no longer assured.

3.3.1 MDP methods

As it was observed previously, a stochastic game is equivalent to a Markov
decision process from the point of view of one agent when the other agents
are playing stationary policies. In this case, any algorithm that learns the
optimal policy for a MDP is equally suited for a SG. Particularly, the algo-
rithms for learning optimal policies presented in Chapter 2 are all suited for
such a task. Some applications of MDP methods, like Q-learning, to a multi-
agent domain have been proposed and not without success (Tan, 1993; Sen
et al., 1994).

Unfortunately, assuming that the other agents are not learning is not
very realistic. Usually the other agents are also trying to maximize their
reward and they cannot be exploited using deterministic policies, which are
the ones most MDP methods find. Taking the matrix game of Table 3.4
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Best-response learners

• Not specifically concerned with Nash equilibria.

• This methods adapt to the other players trying 
taking advantage of their weaknesses.

• Three popular approaches:

• MDP methods.

• Joint-action learners (JALs) (Claus and Boutilier, 98) and 
Opponent Modelling (Uther and Veloso, 97).

• WoLF Policy Hill Climber (Bowling and Veloso, 01).
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MDP Methods

• Use reinforcement learning methods for Markov 
Decision Processes to learn in Stochastic Games: 
Q-learning, Sarsa, Actor-critic, ...

• Some success with this approach (Tan, 93; Sen et al, 
94).

• Pros: 

• Simple implementation.

• Cons:

• Cannot learn stochastic policies (MDP optimal is 
deterministic).

• Environment is not stationary from the agent’s point of 
view (MDP methods assume stationarity). 
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JALs and Opponent Modelling

• Learn Q-values based on joint actions.

• Maintain statistics of the opponents actions to 
compute joint policies.

• In JALs when deciding, Q-values are replaced by:

• Pros:

• Use information of the other players.

• Cons:

• Also learn deterministic policies (max operator).

used instead of the Q-value, when deciding which action to take:

EV (ai) =
∑

a−i∈A−i

Q(〈ai, a−i〉)
∏

j #=i

π̂j(a−i[j]) (3.12)

where π̂j refers to a estimative of the policy being followed by player
j. This estimator is obtained just by dividing the number of times agent j
chose a given action by the number of trials.

3.3.3 Opponent Modeling

Opponent modeling (Uther and Veloso, 1997) is similar to JALs but it was
initially applied to the context of zero-sum games. Like JALs, statistics of
the number of visits to a state and the number of times an opponent chooses
an action are maintained to obtain policy estimators for the other players.
To be more precise, opponent modeling regards the other agents as one mas-
sive opponent with the ability to play joint actions and maintains statistics
over them, which for the algorithm is in all equivalent. The estimator is:

π̂−i(a−i) =
n(s, a−i)

n(s)
(3.13)

where n(s, a−i) represents the number of times joint action (of the other
players) π−i has be chosen in state s and n(s) represents the number of visits
to a state.

The algorithmic version of opponent modeling can be seen in Algorithm
3.1.

3.3.4 WoLF Policy Hill Climber

Contrasting with the algorithms already shown, (Bowling, 2003; Bowling
and Veloso, 2001) proposed the WoLF policy hill climber (WoLF-PHC)
which can learn mixed policies and converges to a best-response strategy
when all the other players also converge. Moreover, if all the players converge
to best-response policies than those policies must form a Nash equilibrium.

The algorithm is on-policy and works by modifying the policy directly
according to the expected reward values it maintains. The idea of policy
hill climbers (PHC) has been present in some reinforcement methods but,
nevertheless, the novelty of the work of (Bowling, 2003) is that a variable
learning rate is combined with the PHC – WoLF stands for Win or Learn
Fast. To quantify the quality of the current policy, an average policy is also
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Deterministic vs Stochastic

• Deterministic policies can be exploited. 

• Most Nash equilibria are stochastic...

• An example: 

Nash

R1

!(a1)

!(a2)

Player 2 leaves the equilibrium 

to deterministic policy, 

maintaining reward

Player 1 exploits deterministic 

policy of player 2   

(note that R2 = -R1)

Figure 3.4: Deterministic policies can be exploited.

into account, if one agent (player 1) is playing the equilibrium strategy, the
other (player 2) may play a deterministic strategy and get the same reward
(which is equivalent to find a border solution for that player). However,
once player 2 leaves the equilibrium, a learning player 1 can exploit that
fact and play some policy which will lower the reward for player 2. Figure
3.4 represents the path taken.

3.3.2 Joint-action Learners

Joint-action learners (JALs) (Claus and Boutilier, 1998) are intended to
solve iterated team matrix games, where the reward function is the same for
all the involved agents and there is only one state which is played indefinitely.
They differ from purely MDP methods in that they learn Q-values based
on the joint-actions rather than just their own actions – it is assumed that
they have full observability of the state and of the other agents’ actions.

So, from the point of view of the learning method there is no difference
between Q-learning and JALs, except for the action space. The problem
arises when deciding which action to take: if the Q-functions for all the
agents were coordinated, they would always choose the best action, when
not performing exploratory moves. However, there is no guarantee that the
other players are at the same learning stage, or even if they are learning at
all. That is why (Claus and Boutilier, 1998) propose a value function to be
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WoLF Policy Hill Climber

• Modifies the policy directly (Hill Climbing procedure)

• WoLF stands for Win or Learn Fast, meaning that the 
learning rate changes when the agent is winning/
loosing.

• Pros:

• Can learn stochastic policies.

• Variable learning rate controls exploration.

• Converges to Nash when all are playing best-response.

• Cons:

• Assumes convergence to stationary policies of the other 
agents.

3.1.3. WoLF Policy Hill Climber. Contrasting
with the algorithms already shown, (Bowling,
2003; Bowling and Veloso, 2001) proposed the
WoLF policy hill climber (WoLF-PHC) which can
learn mixed policies and converges to a best-
response policy when all the other players also
converge. Moreover, if all the players converge
to best-response policies than those policies must
form a Nash equilibrium.

The algorithm works by modifying the policy
directly according to the expected reward values
it maintains. The idea of policy hill climbers
(PHC) has been present in some reinforcement
methods but, nevertheless, the novelty of the work
of (Bowling, 2003) is that a variable learning
rate is combined with the PHC – WoLF stands
for Win or Learn Fast. To quantify the quality
of the current policy, an average policy is also
maintained and the current policy expected value
is compared to the one of the average policy.

Suppose the agent is following policy π and has an
average policy of π̃, the agent is said to be wining
if and only if:

∑

a′

π(s, a′)Q(s, a′) >
∑

a′

π̃(s, a′)Q(s, a′)

The average policy is calculated by maintaining a
statistic of visits to a given state and using it to
update the policy.

In Algorithm 1 the algorithm for WoLF-PHC is
shown. Although some interesting results were
given in (Bowling, 2003) and the method performs
much faster than its fixed learning rate counter-
parts, its convergence is yet to be formally proved.

3.2 Equilibrium Learners

Equilibrium learners specifically try to find poli-
cies which are Nash equilibria for the stochastic
game. Usually, as it is hard to find such equilibria,
they focus on a smaller class of problems, for
example zero-sum games or two-person general-
sum. The advantage of finding the Nash equi-
librium is that the agent learns a lower bound
for performance and, in this situation, it becomes
fairly independent of the policies being played by
the other agents – it will get at least the amount
of return which corresponds to the equilibrium.

The general idea is to find an equilibrium strat-
egy 5 for each state of the game and composing
all the strategies to find the Nash policy.

In fact, a Nash equilibrium policy in a stochastic
game can always be reduced to a collection of
Nash equilibrium strategies, one for each state of

5 A strategy is nothing more than a policy for just one
state.

Algorithm 1 WoLF Policy Hill Climbing
Initialize Q(s, a) and π arbitrarily (e.g. π(s, a)→ 1

|Ai
)

∀s∈S n(s)← 0.

Initialize s
loop

a← probabilistic outcome of policy π(s) {Mixed with
exploration policy}

Take action a, observe reward r and next state s′

Q(s, a)← Q(s, a)+α (r + γ maxa′ Q(s′, a′)−Q(s, a))

Update average policy π̃:

n(s)← n(s) + 1

π̃(s)← π̃(s) +
1

n(s)
(π(s)− π̃(s))

if
∑

a′ π(s, a′)Q(s, a′) >
∑

a′ π̃(s, a′)Q(s, a′) then
δ ← δw (winning)

else
δ ← δl (loosing)

end if

Update policy π(s):

δsa = min
(

π(s, a),
δ

|Ai|− 1

)

∆sa =






−δsa a %= arg max
a′

Q(s, a′)
∑

a′ #=a

δsa′ otherwise

π(s, a)← π(s, a) + ∆sa

Normalize π(s).

s← s′

end loop

the game. So, for an equilibrium policy π∗ and
a state s, the matrix game whose equilibrium is
the strategy π∗(s) can be defined by the following
rewards:

Ri(a) = Qπ∗
i (s, a) (13)

Generally, a solution for an equilibrium learner
would be a fixed point in π∗ of the following
system of equations:

∀i=1...n Q∗
i (s, a) =

∑

s′∈S

Ri(s, a, s′) + γT (s, a, s′)V π∗
i (s′)

(14)

where V π∗

i (s′) represents the equilibrium value
for agent i when the joint-policy being played is
the Nash equilibrium π∗ and is computed with
respect to the Q-values. This is similar to a Bell-
man optimality equation except for the way the
state value function is computed. In fact, the Q-
function could be estimated through a stochastic
approximation procedure very similar to the one
of Q-learning:

∀i=1...n Qi(s, a)→ Qi(s, a) + α
(
ri + γVi(s

′)−Qi(s, a)
)

(15)

with Vi(s′) being the value of a Nash equilibrium
policy for agent i. The big problem with this
approach is that, unlike what happens in MDPs,
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• Specifically try to learn Nash equilibrium policies.

• Basic Idea: each policy is a collection of MG 
strategies (one for each state) where the reward 
matrix is defined has:

• The Q-values can be computed like Q-learning:

• where the state value V is computes as the Nash 
equilibrium value for agent i.

• Problem: Several Nash equilibria!!

• which one to choose??

Equilibrium Learners

3.1.3. WoLF Policy Hill Climber. Contrasting
with the algorithms already shown, (Bowling,
2003; Bowling and Veloso, 2001) proposed the
WoLF policy hill climber (WoLF-PHC) which can
learn mixed policies and converges to a best-
response policy when all the other players also
converge. Moreover, if all the players converge
to best-response policies than those policies must
form a Nash equilibrium.

The algorithm works by modifying the policy
directly according to the expected reward values
it maintains. The idea of policy hill climbers
(PHC) has been present in some reinforcement
methods but, nevertheless, the novelty of the work
of (Bowling, 2003) is that a variable learning
rate is combined with the PHC – WoLF stands
for Win or Learn Fast. To quantify the quality
of the current policy, an average policy is also
maintained and the current policy expected value
is compared to the one of the average policy.

Suppose the agent is following policy π and has an
average policy of π̃, the agent is said to be wining
if and only if:

∑

a′

π(s, a′)Q(s, a′) >
∑

a′

π̃(s, a′)Q(s, a′)

The average policy is calculated by maintaining a
statistic of visits to a given state and using it to
update the policy.

In Algorithm 1 the algorithm for WoLF-PHC is
shown. Although some interesting results were
given in (Bowling, 2003) and the method performs
much faster than its fixed learning rate counter-
parts, its convergence is yet to be formally proved.

3.2 Equilibrium Learners

Equilibrium learners specifically try to find poli-
cies which are Nash equilibria for the stochastic
game. Usually, as it is hard to find such equilibria,
they focus on a smaller class of problems, for
example zero-sum games or two-person general-
sum. The advantage of finding the Nash equi-
librium is that the agent learns a lower bound
for performance and, in this situation, it becomes
fairly independent of the policies being played by
the other agents – it will get at least the amount
of return which corresponds to the equilibrium.

The general idea is to find an equilibrium strat-
egy 5 for each state of the game and composing
all the strategies to find the Nash policy.

In fact, a Nash equilibrium policy in a stochastic
game can always be reduced to a collection of
Nash equilibrium strategies, one for each state of

5 A strategy is nothing more than a policy for just one
state.

Algorithm 1 WoLF Policy Hill Climbing
Initialize Q(s, a) and π arbitrarily (e.g. π(s, a)→ 1

|Ai
)

∀s∈S n(s)← 0.

Initialize s
loop

a← probabilistic outcome of policy π(s) {Mixed with
exploration policy}

Take action a, observe reward r and next state s′

Q(s, a)← Q(s, a)+α (r + γ maxa′ Q(s′, a′)−Q(s, a))

Update average policy π̃:

n(s)← n(s) + 1

π̃(s)← π̃(s) +
1

n(s)
(π(s)− π̃(s))

if
∑

a′ π(s, a′)Q(s, a′) >
∑

a′ π̃(s, a′)Q(s, a′) then
δ ← δw (winning)

else
δ ← δl (loosing)

end if

Update policy π(s):

δsa = min
(

π(s, a),
δ

|Ai|− 1

)

∆sa =






−δsa a %= arg max
a′

Q(s, a′)
∑

a′ #=a

δsa′ otherwise

π(s, a)← π(s, a) + ∆sa

Normalize π(s).

s← s′

end loop

the game. So, for an equilibrium policy π∗ and
a state s, the matrix game whose equilibrium is
the strategy π∗(s) can be defined by the following
rewards:

Ri(a) = Qπ∗
i (s, a) (13)

Generally, a solution for an equilibrium learner
would be a fixed point in π∗ of the following
system of equations:

∀i=1...n Q∗
i (s, a) =

∑

s′∈S

Ri(s, a, s′) + γT (s, a, s′)V π∗
i (s′)

(14)

where V π∗

i (s′) represents the equilibrium value
for agent i when the joint-policy being played is
the Nash equilibrium π∗ and is computed with
respect to the Q-values. This is similar to a Bell-
man optimality equation except for the way the
state value function is computed. In fact, the Q-
function could be estimated through a stochastic
approximation procedure very similar to the one
of Q-learning:

∀i=1...n Qi(s, a)→ Qi(s, a) + α
(
ri + γVi(s

′)−Qi(s, a)
)

(15)

with Vi(s′) being the value of a Nash equilibrium
policy for agent i. The big problem with this
approach is that, unlike what happens in MDPs,
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• Find Nash equilibria in zero-sum games. 

• Nash state values can be found with minimax:

• Can be formulated as a linear program.

• Pros:

• Lower bound for agent performance.

• Convergence has been prooved – very solid for its 
domain.

• Cons:

• Large actions spaces lead to big linear programs.

Minimax-Q (Littman, 94)

3.4.1 Minimax-Q

The method of Minimax-Q (Littman, 1994) is designed to work with zero-
sum stochastic games. In zero-sum games there is only one equilibrium
and, as stated previously, it can be found using linear programming. In
this situation, the state value can be univocally computed by the minimax
procedure and Equation 3.15 only has one fixed point. It is expected that
Algorithm 3.3 converges to the equilibrium policy. In fact, this has been
proved by (Littman and Szepesvári, 1996).

Using minimax to compute the Nash equilibrium, Equation 3.15 can be
used to describe the Nash condition and Equation 3.16 can be used as an
update rule if the Nash value is computed like

V (s) = max
π∈PD(A)

min
o∈O

∑

a∈A

π(s, a)Q(s, 〈a, o〉) (3.17)

where A represents the action space of the learner and O the action space
of the opponent. There is no need for considering a two-dimensional state
function because, as the rewards are always symmetric for the agents, so
will be the state values and Q-values.

The algorithm can be particularized from Algorithm 3.3 to the Minimax-
Q form of Algorithm 3.4.

Algorithm 3.4 Minimax-Q learner
Initialize Q(s, 〈a, o〉) and π(s) arbitrarily

Initialize s
loop

a ← probabilistic outcome of π(s) {Mixed with exploration policy}

Take action a, observe reward r, next state s′ and opponent action o

Q(s, 〈a, o〉) ← Q(s, 〈a, o〉) + α
(
r + γV (s′)−Q(s, 〈a, o〉)

)

with V (s) = max
π′∈PD(A)

min
o′∈O

∑
a′∈A

π(s, a′) Q(s, 〈a′, o′〉)

π(s) → arg max
π′∈PD(A)

min
o′∈O

∑
a′∈A

π(s, a′) Q(s, 〈a′, o′〉)

s ← s′

end loop

41
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Nash-Q (Hu and Wellman, 98)

• Addresses the problem of learning in 2-player 
general-sum games.

• Quadratic programming to find Nash state values.

• Several equilibria (which one to choose??). Solved 
by strict conditions.

• Pros:

• Applicable to a wider range of problems.

• Cons:

• Convergence conditions are too strict and unrealistic

• All intermediate games must have one equilibrium AND

• It must be either a saddle point (like zero-sum games) or a global 
maximum (like team games).
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Friend-or-Foe-Q (Littman, 01)

• Motivated by the assumptions of Nash-Q, it is restricted to 
a class of problems:

• The agent is either playing against a Foe or with a Friend, and is 
informed by an external oracle.

• Two different solutions:

• Friend: the game is cooperative and has a Nash at a global maximum 
– found using max operator (like MDPs).

• Foe: the game is adversarial and has a Nash at a saddle point – use 
minimax operator (like Minimax-Q).

• Pros:

• Solid in its domain (no strange convergence conditions).

• Cons:

• When playing Friend, might need an oracle too coordinate equilibrium 
choice (all with the same payoff) – does learning make sense in this 
situation?
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Other Approaches

• Local Context-Specific Coordination (for team games) 
(Kok and Vlassis, 04).

• Coordination graphs for decoupling coordination.

• Decompose global reward function into sum of functions.

• Beliefs about other agents (Tang and Kaelbling, 03).

• Agent maintains beliefs about other agent’s policies.

• Converges to a cyclic solution that does better than best-
response in average – another solution concept!!

PSfrag replacements

A1

A2 A3

A4

f1 f2

f3

Fig. 2. An example coordination graph for a 4-agent problem.

3 Coordination graphs

In systems where multiple agents have to coordinate their actions, it is infea-
sible to model all possible joint actions since this number grows exponentially
with the number of agents. Fortunately, most problems exhibit the property
that each agent only has to coordinate with a small subset of the other agents,
e.g., in many robotic applications only robots that are close to each other have
to coordinate their actions. A recent approach to exploit such dependencies in-
volves the use of a coordination graph (CG), which represents the coordination
requirements of a system (3).

The main assumption is that the global payoff function R(a) can be decom-
posed into a linear combination of local payoff functions, each involving only a
few agents. For example, suppose that there are four agents and the following
decomposition of the payoff function:

R(a) = f1(a1, a2) + f2(a1, a3) + f3(a3, a4).

The functions fi specify the local coordination dependencies between the ac-
tions of the agents and can be graphically depicted as in Fig. 2. A node in this
graph represents an agent, denoted by Ai, while an edge defines a (possible
directed) dependency between two agents. Only interconnected agents have
to coordinate their actions at any particular instance. In the decomposition of
R(a), A2 has to coordinate with A1, A4 has to coordinate with A3, A3 has to
coordinate with both A4 and A1, and A1 has to coordinate with both A2 and
A3. The global coordination problem is thus replaced by a number of local
coordination problems each involving fewer agents.

In order to solve the coordination problem and find the optimal joint action
a∗ that maximizes R(a), we can apply a variable elimination algorithm, which
is almost identical to variable elimination in a Bayesian network (3; 10). The
main idea is that the agents are eliminated one by one after performing a local
maximization step which takes all possible action combinations of an agent’s
neighbors into account.

The algorithm operates as follows. One agent is selected for elimination, and it
collects all payoff functions from its neighbors. Next, this agent optimizes its

5
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Conclusions

• Best-response learners:

• Exploit the environment (including other agents) in the best 
way they can.

• Might end up with higher payoffs then Nash equilibria.

• WoLF-PHC is best suited for learning in the multi-agent 
domain.

• Equilibrium Learners:

• Provide a lower bound to the performance.

• Problem with computing and choosing equilibria.

• Minimax-Q is the most solid in its domain, although FFQ also 
does well. Nash-Q imposes too strict conditions, although it 
provides a nice general formulation.

• There has been some criticism to the equilibrium approach 
(Shoham et al, 04)
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