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| ntroduction

This meeting:

e Overview of the field
» Motivation
» Assumptions
» Models
» Methods

e What topics shall we address?
e Fix a schedule.
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M otivation

e Major goal of Artificial Intelligence: build intelligent aants.

e Russell and Norvig (2003): “an agent is anything that can b
viewed as perceiving its environment through sensors and
acting upon that environment through actuators”.

e Problem: how to act?
e Example: a robot performing an assigned task.
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Applications

Reinforcement learning applications:

e Aibo gait optimization (Kohl and Stone, 2004a,b;
Saggar et al., 2006)

e Helicopter control (Bagnell and Schneider, 2001; Ng et al.,
2004)

e Airhockey (Bentivegna et al., 2002)

e More on

http:// neuromancer. eecs. um ch. edu/ cgi - bi n/tw ki / vi ew Mai n/
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Sequential decision making under uncertainty

Assumptions:
Sequential decisions: problems are formulated as a sequence of
“Independent” decisions;

Markovian environment: the state at timé depends only on the
events at time — 1;

Evaluative feedback: use of a reinforcement signal as
performance measure (reinforcement learning);
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Sequential decision making under uncertainty (1)
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Possible variations:

e Type of uncertainty.

e Full vs. partial state observability.

e Single vs. multiple decision-makers.

e Model-based vs. model-free methods.
e Finite vs. infinite state space.

e Discrete vs. continuous time.

e Finite vs. infinite horizon.

6/20



Sequential decision making under uncertainty (2)

INSTITUTO

SUPERIOR
TECNICO

Models

Methods

-«
MDPs,
POMDPs, etc. DP, TD, etc.
Applications
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Basic model: Markov chains

The basic model dfarkov chainsdescribes (first order)
discrete-time dynamic systems.
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Adding control

In controlled Markov chainghe transition probabilities depend
on a control paramete.

Pa, (4,7)
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Markov decision processes

A Markov decision procegd®DP) is a controlled Markov chain
endowed with a performance criterion (Puterman, 1994;
Bertsekas, 2000).

e The decision-maker receives a numerical rewardor each
time Iinstant;

e The decision-maker must optimize some long-run optimalit
criterion, e.g.,

T—o0 T

-7 - - o -
1
Jav = lim = Z Rt : Jdisc = nyth .
| t=1 ) | t=1 J
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Considering partial observability

A partially observable MDRPOMDP) is an MDP where the
decision maker is not able to access all information relet@an
the decision-making process (Kaelbling et al., 1998).

e The decision-maker receives an observattpifior each time
Instant¢;

e The observation depends on the state of the underlying
Markov chain;
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Control

State

Sensor

Considering partial observability (1)
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Multiple decision-makers

e Stochastic gamgska Markov games) provide a multi-agent
generalization of MDPs (Shapley, 1953);

e |n stochastic games, the control parameter depends on the
choice of severahdependentlecision-makers;

¢ |n stochastic games, each decision-makeicéan receive a
different rewardR’ at each time instarit
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Multiple decision-makers (1)

In stochastic games, as in MDPs,

e Each decision-makek| must optimize its own long-run
optimality criterion, e.g.,

o .

1
Jee=Jim ZE > RE|5 Jge=E Y 7R
| t=1 t=1 i

e Partial state observabllity can be considered, leadingdo t

framework ofpartially observable stochastic games
(POSGS).
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Fully observable:
e Multiagent MDPs (Boutilier, 1996).
Partially observable:
e Partially observable stochastic games (Hansen et al.,)2004
e Decentralized POMDPs (Bernstein et al.
e Interactive POMDPs (Gmytrasiewicz and Doshi, 2005).
e Each agent only observes its own observation.

)R
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Solution methods: M DPs

Model based

e Basic: dynamic programming (Bellman, 1957), value
iteration, policy iteration.

e Advanced: prioritized sweeping, function approximators.
Model free, reinforcement learning (Sutton and Barto, 3998

e Basic: Q-learning, TDY), SARSA, actor-critic.

e Advanced: generalization in infinite state spaces,
exploration/exploitation issues.

)R
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e Exact methods (Monahan, 1982; Cheng, 1988;
Cassandra et al., 1994; Zhang and Ll
e Heuristic methods: based on MDP solution.
e Approximate methods: gradient descent, policy search,
point-based techniques.
Other topics

e Predictive State Representations (Littman et al., 2002).
e Reinforcement learning in POMDPs, PSRs.

)R
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m Multiagent methods
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e Hansen et al. (2004)’s dynamic programming.
e JESP (Nair et al., 2003).
e Bayesian game approximation (Emery-Montemerlo et al.,

laYaVal

2004).
Model free:

e Minimax-Q (Littman, 1994)

e FriendFoe-Q (Littman, 2001)

e Nash-Q, multi-agent DYNA-Q, correlated-Q.
' 'Q e Learning coordination.
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Reading group

Questions to be answered:
e What topics shall we cover?
e \When shall we meet? How often?
e Schedule, volunteers?
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