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Overview

• Introduction to Markov decision processes (MDPs):
◮ Model
◮ Model-based algorithms
◮ Reinforcement-learning techniques

• Discrete state, discrete time case.

• For further reference: (Puterman, 1994; Sutton and Barto,
1998; Bertsekas, 2000).

• In this talk algorithms are taken from (Sutton and Barto,
1998).
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Discrete MDP model

Discrete MDP model:

• Time t is discrete.

• State spaceS.

• Set of actionsA.

• Reward functionR : S × A→ R.

• Transition modelp(s′|s, a), S × A→ ∆(S).

• Initial states0 is drawn from∆(S).

The Markov property entails that the next statest+1 only depends
on the previous statest and actionat:

p(st+1|st, st−1, . . . , s0, at, at−1, . . . , a0) = p(st+1|st, at). (1)
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MDP Agent

environment
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Optimality criterion

Agent should maximize

E
[

h
∑

t=0

γtRt

]

, (2)

where

• h is the planning horizon, can be finite or∞

• γ is a discount rate,0 ≤ γ < 1

Reward hypothesis (Sutton and Barto, 1998):
All goals and purposes can be formulated as the maximizationof
the cumulative sum of a received scalar signal (reward).
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Policies and value

An agent acts according to its policy

π : S → A. (3)

A common way to characterize a policy is by its value function:

V π(s) = R(s, π(s)) + E
[

∞
∑

t=1

γtR(st, π(st))
]

. (4)

The expectation operator averages over the stochastic transition
model, which leads to the following recursion:

V π(s) = R(s, π(s)) + γ
∑

s′∈S

p(s′|s, π(s))V π(s′). (5)
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Policies and value (1)

Extracting a policyπ from a value functionV is easy:

π(s) = arg max
a∈A

[

R(s, a) + γ
∑

s′∈S

p(s′|s, a)V (s′)
]

. (6)

Bellman (1957) equation:

V ∗(s) = max
a∈A

[

R(s, a) + γ
∑

s′∈S

p(s′|s, a)V ∗(s′)
]

, (7)

Solving this (nonlinear) system of equations for each states

yields the optimal value function, and an optimal policyπ∗.
However, due to the nonlinearmax operator solving the system
for each state simultaneously is not efficient for large MDPs
(Puterman, 1994, Sec. 6.9).
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Value iteration

Value iteration: successive approximation technique.
The optimal value functionV ∗0

V ∗0 (s) = max
a∈A

R(s, a). (8)

In order to consider one step deeper into the future, i.e., to
computeV ∗n+1 from V ∗n we can turn (7) into an update:

V ∗n+1(s) = max
a∈A

[

R(s, a) + γ
∑

s′∈S

p(s′|s, a)V ∗n (s′)
]

, (9)

which is known as a Bellman backupH, allowing us to write (9)
as

V ∗n+1 = HV ∗n . (10)
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Value iteration (1)

Initialize V arbitrarily, e.g.,V (s) = 0,∀s ∈ S

repeat
δ ← 0
for all s ∈ S do

v ← V (s)

V (s)← maxa∈A

[

R(s, a) + γ
∑

s′∈S p(s′|s, a)V (s′)
]

δ ← max(δ, |v − V (s)|)
end for

until δ < ǫ

ReturnV
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Value iteration (2)

Value iteration discussion:

• As n→∞, value iteration converges.

• Value iteration has converged when the largest updateδ in
an iteration is below a certain thresholdǫ.

• Exhaustive sweeps are not required for convergence:
arbitrary states can be backed up in arbitrary order, provided
that in the limit all states are visited infinitely often
(Bertsekas and Tsitsiklis, 1989).

• This can be exploited by backing up the most promising
states first, known as prioritized sweeping
(Moore and Atkeson, 1993; Peng and Williams, 1993).
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Policy iteration (Sutton and Barto, 1998)

{1. Initialize} V (s) ∈ R andπ(s) ∈ A

{2. Policy evaluation}

repeat
δ ← 0

for all s ∈ S do
v ← V (s)

V (s)← R(s, π(s)) + γ
P

s′∈S
p(s′|s, π(s))V (s′)

δ ← max(δ, |v − V (s)|)

end for
until δ < ǫ

{3. Policy improvement}

policy-stable← true

for all s ∈ S do
b← π(s)

π(s)← arg maxa∈A

h

R(s, a) + γ
P

s′∈S
p(s′|s, a)V (s′)

i

if b 6= π(s), thenpolicy-stable← false

end for
if policy-stable, then stop; else go to 2
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Policy iteration (1)

Policy iteration discussion:

• Converges in finite number of steps (only finite number of
stationary policies), when using exact policy evaluation.

• Policy evaluation can be done iteratively (as shown before)
or by solving the system of linear equations.

• When state space is large, this can be expensive.
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Q-learning

• Reinforcement-learning techniques learn from experience,
no knowledge of the model is required.

• Policy is often represented as state-action value function:

Q : S × A→ R (11)

and the policy as

π(s) = arg max
a∈A

Q(s, a) (12)

• Q-learning update (Watkins, 1989):

Q(s, a) = (1− β) Q(s, a) + β
[

R(s, a) + γ max
a′∈A

Q(s′, a′)
]

,

(13)
where0 < β ≤ 1 is a learning rate. 13/17



Q-learning (1)

Initialize Q(s, a) arbitrarily
repeat

Initialize s

repeat
Choosea from s using policy derived fromQ (e.g.,
ǫ-greedy)
Take actiona, observer, s′

Q(s, a) = (1− β) Q(s, a) + β
[

r + γ maxa′∈A Q(s′, a′)
]

s← s′

until s is terminal
until
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Q-learning (2)

Q-learning discussion:

• Q-learning is guaranteed to converge to the optimal
Q-values if allQ(s, a) values are updated infinitely often
Watkins and Dayan (1992).

• In order to make sure all actions will eventually be tried in
all states exploration is necessary.

• A common exploration method is to execute a random
action with small probabilityǫ, which is known asǫ-greedy
exploration Sutton and Barto (1998).
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Potential future topics

• Dynamic programming or reinforcement learning in
continuous state spaces.

• Advanced reinforcement-learning topics such as
generalization.

• Adding partial observability.

• . . .
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