
Markov decision processes:
Model and basic algorithms

Matthijs Spaan

Institute for Systems and Robotics

Instituto Superior Técnico

Lisbon, Portugal

Reading group meeting, January 22, 2007

1/17

Overview

• Introduction to Markov decision processes (MDPs):
◮ Model
◮ Model-based algorithms
◮ Reinforcement-learning techniques

• Discrete state, discrete time case.

• For further reference: (Puterman, 1994; Sutton and Barto,
1998; Bertsekas, 2000).

• In this talk algorithms are taken from (Sutton and Barto,
1998).

2/17

Discrete MDP model

Discrete MDP model:

• Time t is discrete.

• State spaceS.

• Set of actionsA.

• Reward functionR : S × A→ R.

• Transition modelp(s′|s, a), S × A→ ∆(S).

• Initial states0 is drawn from∆(S).

The Markov property entails that the next statest+1 only depends
on the previous statest and actionat:

p(st+1|st, st−1, . . . , s0, at, at−1, . . . , a0) = p(st+1|st, at). (1)

3/17

MDP Agent

environment

agent action a

obs. s
reward r

π

state s

4/17

Optimality criterion

Agent should maximize

E
[

h
∑

t=0

γtRt

]

, (2)

where

• h is the planning horizon, can be finite or∞

• γ is a discount rate,0 ≤ γ < 1

Reward hypothesis (Sutton and Barto, 1998):
All goals and purposes can be formulated as the maximizationof
the cumulative sum of a received scalar signal (reward).

5/17

Policies and value

An agent acts according to its policy

π : S → A. (3)

A common way to characterize a policy is by its value function:

V π(s) = R(s, π(s)) + E
[

∞
∑

t=1

γtR(st, π(st))
]

. (4)

The expectation operator averages over the stochastic transition
model, which leads to the following recursion:

V π(s) = R(s, π(s)) + γ
∑

s′∈S

p(s′|s, π(s))V π(s′). (5)

6/17

Policies and value (1)

Extracting a policyπ from a value functionV is easy:

π(s) = arg max
a∈A

[

R(s, a) + γ
∑

s′∈S

p(s′|s, a)V (s′)
]

. (6)

Bellman (1957) equation:

V ∗(s) = max
a∈A

[

R(s, a) + γ
∑

s′∈S

p(s′|s, a)V ∗(s′)
]

, (7)

Solving this (nonlinear) system of equations for each states

yields the optimal value function, and an optimal policyπ∗.
However, due to the nonlinearmax operator solving the system
for each state simultaneously is not efficient for large MDPs
(Puterman, 1994, Sec. 6.9).

7/17

Value iteration

Value iteration: successive approximation technique.
The optimal value functionV ∗0

V ∗0 (s) = max
a∈A

R(s, a). (8)

In order to consider one step deeper into the future, i.e., to
computeV ∗n+1 from V ∗n we can turn (7) into an update:

V ∗n+1(s) = max
a∈A

[

R(s, a) + γ
∑

s′∈S

p(s′|s, a)V ∗n (s′)
]

, (9)

which is known as a Bellman backupH, allowing us to write (9)
as

V ∗n+1 = HV ∗n . (10)

8/17

Value iteration (1)

Initialize V arbitrarily, e.g.,V (s) = 0,∀s ∈ S

repeat
δ ← 0
for all s ∈ S do

v ← V (s)

V (s)← maxa∈A

[

R(s, a) + γ
∑

s′∈S p(s′|s, a)V (s′)
]

δ ← max(δ, |v − V (s)|)
end for

until δ < ǫ

ReturnV

9/17

Value iteration (2)

Value iteration discussion:

• As n→∞, value iteration converges.

• Value iteration has converged when the largest updateδ in
an iteration is below a certain thresholdǫ.

• Exhaustive sweeps are not required for convergence:
arbitrary states can be backed up in arbitrary order, provided
that in the limit all states are visited infinitely often
(Bertsekas and Tsitsiklis, 1989).

• This can be exploited by backing up the most promising
states first, known as prioritized sweeping
(Moore and Atkeson, 1993; Peng and Williams, 1993).

10/17

Policy iteration (Sutton and Barto, 1998)

{1. Initialize} V (s) ∈ R andπ(s) ∈ A

{2. Policy evaluation}

repeat
δ ← 0

for all s ∈ S do
v ← V (s)

V (s)← R(s, π(s)) + γ
P

s′∈S
p(s′|s, π(s))V (s′)

δ ← max(δ, |v − V (s)|)

end for
until δ < ǫ

{3. Policy improvement}

policy-stable← true

for all s ∈ S do
b← π(s)

π(s)← arg maxa∈A

h

R(s, a) + γ
P

s′∈S
p(s′|s, a)V (s′)

i

if b 6= π(s), thenpolicy-stable← false

end for
if policy-stable, then stop; else go to 2

11/17

Policy iteration (1)

Policy iteration discussion:

• Converges in finite number of steps (only finite number of
stationary policies), when using exact policy evaluation.

• Policy evaluation can be done iteratively (as shown before)
or by solving the system of linear equations.

• When state space is large, this can be expensive.

12/17

Q-learning

• Reinforcement-learning techniques learn from experience,
no knowledge of the model is required.

• Policy is often represented as state-action value function:

Q : S × A→ R (11)

and the policy as

π(s) = arg max
a∈A

Q(s, a) (12)

• Q-learning update (Watkins, 1989):

Q(s, a) = (1− β) Q(s, a) + β
[

R(s, a) + γ max
a′∈A

Q(s′, a′)
]

,

(13)
where0 < β ≤ 1 is a learning rate. 13/17

Q-learning (1)

Initialize Q(s, a) arbitrarily
repeat

Initialize s

repeat
Choosea from s using policy derived fromQ (e.g.,
ǫ-greedy)
Take actiona, observer, s′

Q(s, a) = (1− β) Q(s, a) + β
[

r + γ maxa′∈A Q(s′, a′)
]

s← s′

until s is terminal
until

14/17

Q-learning (2)

Q-learning discussion:

• Q-learning is guaranteed to converge to the optimal
Q-values if allQ(s, a) values are updated infinitely often
Watkins and Dayan (1992).

• In order to make sure all actions will eventually be tried in
all states exploration is necessary.

• A common exploration method is to execute a random
action with small probabilityǫ, which is known asǫ-greedy
exploration Sutton and Barto (1998).

15/17

Potential future topics

• Dynamic programming or reinforcement learning in
continuous state spaces.

• Advanced reinforcement-learning topics such as
generalization.

• Adding partial observability.

• . . .

16/17

References

R. Bellman.Dynamic programming. Princeton University Press, 1957.

D. P. Bertsekas.Dynamic Programming and Optimal Control. Athena Scientific, Belmont, MA,

2nd edition, 2000.

D. P. Bertsekas and J. N. Tsitsiklis.Parallel and Distributed Computation: Numerical Methods.

Prentice Hall, 1989.

A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learning with less data and

less time.Machine Learning, 13(1):103–130, 1993.

J. Peng and R. J. Williams. Efficient learning and planning within the Dyna framework.Adaptive

Behavior, 1(4):437–454, 1993.

M. L. Puterman.Markov Decision Processes—Discrete Stochastic Dynamic Programming. John

Wiley & Sons, Inc., New York, NY, 1994.

R. S. Sutton and A. G. Barto.Reinforcement Learning: An Introduction. MIT Press, 1998.

C. J. C. H. Watkins.Learning from delayed rewards. PhD thesis, Cambridge University, 1989.

C. J. C. H. Watkins and P. Dayan. Technical note: Q-learning.Machine Learning, 8(3-4):

279–292, 1992.

17/17

	Overview
	Discrete MDP model
	MDP Agent
	Optimality criterion
	Policies and value
	Policies and value (1)
	Value iteration
	Value iteration (1)
	Value iteration (2)
	Policy iteration citep {Sutton98}
	Policy iteration (1)
	Q-learning
	Q-learning (1)
	Q-learning (2)
	Potential future topics
	References

