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Abstract

We study how to encode the local information of the point clouds in such a way that a robot can learn by
experimentation the graspability of objects. After learning, the robot should be able to predict the graspability of
unknown objects. We consider two well known descriptors in the computer vision community: Spin images and
shape context. In addition, we consider two recent and efficient descriptors: the Point Feature Histogram and the
Viewpoint Feature Histogram. We evaluate the discriminative properties of the descriptors on a synthetic scenario
and a simulator scenario, classifying the points with a standard learning algorithm, the Support Vector Machines.
The results suggest the addition of more global information to the local descriptors.

1 Introduction

Previous works have shown promissing results on learning grasping points from local visual descriptors [13} 12,8}
17,14, 111]]. The learning approaches aim to build a model from exploration of the objects that is able to generalize
across objects. The majority of these approaches rely on local visual features computed on a stero pair in order to
obtain sparse 3D features, which are utilized to estimate the graspable points of an object [[13, 8 [17]. The recent
development of range cameras have brought a denser 3D data, which have been utilized to build global object
models for robotic grasping [[L1]. In difference to previous works, our aim is to build local object models using
dense 3D data in order to learn the graspable and non-graspable shapes of objects.

Previous work at IST [12] addressed learning on an image-based approach by estimating the (full) probabil-
ity distribution of grasping at each pixel given the output of a large set of visual descriptors. The image-based
descriptors encode the similarity of the region around the pixel to several type of textures. We want to follow a
similar approach in this work, taking into account the richer perception capabilities of the range camera mounted
on the mobile platform. In this paper, we explore local descriptors of point clouds in order to discriminate between
graspable and non-graspable regions.

In the context of 3d image registration and matching, several mesh-based and point cloud-based descriptors
have been proposed. On the point cloud type, the most popular descriptors include the spin images [9] and the
shape context [3]. In the context of robotics, the Point Feature Histogram (PFH) [[15] and the Viewpoint Feature
Histogram (VFH) [16] have shown both efficiency and robustness. We consider these four features in order to
build local descriptors of the graspable and non-graspable regions.

The proper scenario for learning how to discriminate the local features must consider the following steps: (i)
Acquisition of the point cloud, (ii) selection of a reference (reaching) point, (iii) execution of the grasping action
several times and (iv) saving the grasping result and its corresponding features. This exploratory setup provides
data for the application of a learning algorithm, which should be able to predict the grasping outcome on unseen
objects. Since such an experimental setup is time consuming and the actual scenario is available just in a simulated
world, we present results on two setups: On the first one, the data samples come from: (a) previously acquired
point clouds from the ROS household database and (b) their grasping labels are defined by educated guesses. On
the second one, the data samples come from: (a) partial views of the objects acquired in the ORCA simulator
[1] and (b) their grasping labels come from the repetition of the grasping action four times. On one hand, If the
grasping is successful across all the repetitions, a new positive sample is stored. On the other hand, if the grasping
is unsuccessful on all the repetitions, a negative sample is stored.

The two experimental scenarios allow us to compare the feature capabilities on a perfect sensor acquisition vs.
the partial view of the simulation. We apply the Support Vector Machines (SVM) learning algorithm [7]] with three



different kernels: (i) linear and (ii) polynomial of degree two. We consider five objects on the synthetic scenario
and four objects on the ORCA scenario, performing the leave-one-out validation in order to compute the True
Positive (TP) rate and the False Positive (FP) rate.

2 Local descriptors

We consider the following 3D local descriptors for point clouds: Spin images [9], shape context [3| [10], PFH
[15] and VFH [[16]. The spin images is one of the most referred descriptors in the computer vision community,
while the shape context is a very general descriptor that can be applied to points of any dimension and has shown
good matching capabilities in both 2D and 3D [5]. The Point Feature Histogram (PFH) and Viewpoint Feature
Histogram (VFH) have been related to grasping applications due to their efficiency and better matching results
when compared to spin images [15} [16].

Spin image descriptor [9] represents the neighborhood N of a reference point in a cloud by fitting an oriented
coordinate system at the point. The local system of cylindrical coordinates at the reference point p is defined using
the normal and tangent plane: the radial coordinate « defined as the perpendicular distance to the line through the
surface normal n(p), and the elevation coordinate /3, defined as the signed perpendicular distance to the tangent
plane. The spin descriptor is a histogram of points in the support region represented in «, 3 coordinates. The
support region is defined by limiting the range of the values of a and 5 and requiring that the angle between the
normals is below a threshold, which considers self occlusion artifacts. The histogram is usually represented as a
2D image that at pixel (4, j) contains the number of points at the region parametrized by arange « € [; 3], €
[81 2] Thus, the spin image parameters are: (i) The number of neighbors considered, (ii) the « range and (iii)
the (3 range.

The concept of shape context descriptor was first introduced in [3] for image analysis, though it is directly
applicable to 3D shapes [[10]]. The shape context describes the structure of the shape as relations between a point
to the rest of the points in the region. Given the coordinates of a point p on the shape, the shape context descriptor
is constructed as a histogram of the direction vectors from p to the rest of the point, |¢ — p|2, ¢ € N. Typically,
a log-polar histogram is used where the angle between the points is sampled uniformly and the distance between
the points is sampled logarithmically. In the case of 3D points, the log-polar histogram has tree coordinates: the
inclination angle, the azimuth angle and the distance (sampled logarithmically) so the parameters of the shape
context are: (i) the number of bins for both angles and (ii) the number of distance bins.

The PFH encodes the statistics of the shape of a point cloud by accumulating the geometric relations between
all the point pairs. Given a pair of points in the neighborhood and their normals, the PFH accumulates four
dimensional histogram of (see Figure [I): (i) the cosine of the angle «, (ii) the cosine of the angle ¢, (iii) the
angle 0 and (iv) the distance between the points (normalized to the bounding box of the neighborhood). The PFH
parameters are : (i) the dimensions considered to compute the histogram and (ii) the number of bins for each
dimension.

Figure 1: PFH computation illustration (from [[14])

The VFH aims to remove the viewpoint invariance of PFH, by augmenting the PFH feature with the relation
between the camera’s point of view to the point cloud of an object. The view vector is provided by the direction
of the principal axis of the camera and the viewpoint component is computed by collecting a histogram of the
angles that the viewpoint direction makes with each normal. In difference to the multi-dimensional histogram of
the original PFH, the PFH component of VFH computes one dimensional histograms of each of the four values
mentioned above, between: (i) the viewpoint direction located at the object’s central point and (ii) each of the



normals on the surface. Since our approach relies on a reference point and its normal, we compute the PFH
component of VFH between: (i) the normal of the reference point and each of the normals of the neighborhood.
Thus, we compute the PFH component of the VFH feature in order to describe a neighborhood, which we refer to
as VFH in the remainder of the paper.

3 Learning procedure

We follow the reaching point concept presented by [8, [13] that relates some of the parameters of the gripper (end
effector position and approaching orientation) to a particular point on the object (point location and its normal
vector). Each reaching point can be classified as graspable or non-graspable according to the values of its local
descriptor. We apply a traditional learning algorithm, the SVM classifier [7]], in order to discriminate between
graspable and non-graspable regions. A robot that learns by exploration the graspability of (local) neighborhoods
of objects, should consider the following steps: (i) Data acquisition, (ii) reaching point selection (iii) feature
computation and (iv) grasping trial execution. We consider two scenarios for the visual descriptor evaluation: (i)
A first scenario where the data acqusition is simulated and the grasp labels are provided by educated guesses and
(i) a second scenario where all the steps are executed on the ORCA simulator.

3.1 Synthetic scenario

This scenario assumes that the 3D point data for each object has been acquired previously with a set of scans around
the object, so we have complete point clouds. In addition, the grasping labels come from educated guesses so the
learning by exploration is not really performed. Thus, this * perfect scenario” serves as a comparison baseline to
the more realistic setup provided by the ORCA simulator.

In order to reduce the large amount of points of all the objects, we apply an interest point detector on the point
clouds: the Laplace-Beltrami operator [2]). The local maxima of the Laplace-Beltrami operator selects points
where there are local changes in curvature. These changes in curvature occurs in saddle points, hills, valleys and
protuberances of the surface. In the case of a gripper, some of the interest points are graspable such as the hills and
protuberances. In addition, the interest point selection reduces the complexity of the classification problem. Figure
P] illustrates the interest points selected by the local maximum of the Laplace-Beltrami operator for the objects
considered in this paper.

We compute the descriptors at the reference points selected by the Laplace-Beltrami operator and employ the
labels provided by educated guess. On this setup, we learn to discriminate between the graspable and non-graspable
points.

3.2 ORCA scenario

This scenario simulates the complete learning cycle described on section 3] in the ORCA simulation environment
[1]. In each experiment, the robot performs a grasping trials on a large number of reaching points. The objects
that were chosen for these experiments were all different types of IKEA cups, ranging from small espresso cups to
large size coffee cups. The setup is shown in Figure 3]

A reaching point, is defined as a fixed distance from a given point on the object, in the direction of the surface
normal at that given point. The 3D data is acquired from a simulated range camera (with the parameters of the
Kinect sensor), placed on the robot platform. Figure ] shows an example of the depth image acquired from the
Kinect. This image is then segmented in order to remove background objects such as the table, and the depth is
converted to a point cloud describing the object, see Figure 3]

To reduce the number of reaching points, the point cloud is subsampled and at each of the chosen points, the
surface normal is estimated from the neighboring points.

By using inverse kinematics, a trajectory is generated that allows the robot to approach the reaching point along
the direction of the object’s surface normal. The robot stops when the base of the gripper is placed at the reaching
point. From this point the robot closes the gripper and moves the arm upwards while maintaining a closed grip.
At the end of the movement, the distance between the fingers of the grippers is used to evaluate if the grasp was
successful. If the distance is under a small threshold the object is assumed to have fallen out of the grip and the
grasp is unsuccessful. An example of a successful grasp is shown in Figure[6|and an unsuccessful grasp in Figure

i



Figure 2: The white diamonds display the location of the interest points from the local maxima of the Laplacian-
Beltrami operator
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Figure 4: Depth image example

200

100

] = e} =2 o} = o} = o}
Lo [} L i} L = L = Lo
— — [} ™ iy} [y} =T =T

Figure 5: Point cloud example
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Figure 6: Successful grasp
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Figure 7: Unsuccessful grasp
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Figure 8: Grasping result. Points that resulted in a successful grasp are shown with a red circle.

This is repeated for each of the reaching points. The result of this experiment is shown in Figure[§] As can
be seen in the figure, most of the successful grasps are found when grasping at the handle. In total six different
objects were used in the experiments, and each object was tested with eight different orientations, resulting in a
dataset of 477 successful grasping attempts and 5317 unsuccessful attempts.

4 Results

We evaluate the classification performance by applying the leave-one-out validation method and computing the
True Positive (TP) and False Positive (FP) rates for each experiment. The leave-one-out test allow us to evaluate
the generalization capabilities of the classifier. Regarding the grasping prediction on unseen objects, the critical
issue is to have almost zero FP because we do not want the robot to try to grasp a non-graspable object. The
features’” parameters for all the experiments are:

e PFH: Three angular features (the distance is not considered) and three bins for each dimension. A sample
z € R¥=27,

e VFH: All four features and three bins for each dimension. A sample z € R**3=12,
e Spin images: Ten bins for each angular dimension. A sample 2 € R10°=100_

e Shape context: Four angular bins and four distance bins. A sample z € R4*=64,



4.1 Synthetic scenario

On the initial experimental round on this scenario, we have compared the reduction of the data samples by applying
an interest point detector vs. the complete data. On the complete data scenario, the learning algorithm was not
able to generalize on the testing set so all the points were classified as graspable. On the interest point selection
scenario, we have found generalization capabilities. Thus, we just present the results of the reduced set of reaching
points computed by the Laplace-Beltrami operator [2].

We choose five common objects available from the household object database [6]], shown in Figure[2} a cham-
paign glass, a wine glass, a cup, a espresso cup and a dish. We evaluate the generalization capabilities across
similar objects in two tests: (i) We select the cups and glasses and divide them into two sets for the leave-one-out
setup and (ii) use the classifiers learnt in the previous step to classify the reaching points of a very different object,
the dish. These two tests are shown on the left and right columns of Table|1|and Table

4 object | 5 object
TP (%) | 15.13 841
e FP (%) | 4.76 4.4
TP (%) 1.43 372
s FP (%) 0.56 0.39
TP (%) | 19.41 11.53
PFH+VFH | pooh | oo 15
Spin Images TP (%) | 18.09 10.34
pinlmages | gp () | 872 | 826
TP (%) | 5.13 508
Shape Context EP (%) >3 o

Table 1: Results of synthetic scenario using the SVM with linear kernel. The top three features are: PFH + VFH,
Spin Images and PFH

4 object | 5 object

TP (%) | 2523 | 15.03
PFH FP (%) | 9.43 9.47
TP (%) | 9.85 6.16
VFH FP (%) | 422 3.1
TP (%) | 2553 | 16.68
PEH+VFH | b o) | 757 6.58
S TP (%) | 241 21
PULIMAEES | gp (%) | 16.76 15.39
TP (%) | 1498 | 1447
Shape Context | pp g0 | 1339 | 1243

Table 2: Results of synthetic scenario using the SVM with polynomial kernel of degree 2. The top three features
are: PFH + VFH, PFH and Spin images

We remark that independently of the type of kernel and testing set, the top three features are: PFH + VFH, PFH
and Spin images. However, the TP rate is not very high and the FP is very large for grasping purposes. Figure 9]
illustrates the classification result of one of the tests.

4.2 ORCA scenario

We choose four cups in order to evaluate the learning procedure, shown in Figure [I0] We aim to evaluate the
generalization capabilities of the features under the partial view constraint, which has a large impact on the local
descriptor. By applying the leave-one-out setup on the data acquired on ORCA, we observe that the top three fea-
tures are: PFH + VFH, PFH and shape context. However, the generalization capabilities of the features computed
on partial point clouds is reduced.
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Figure 9: The white diamonds display the locations of the interest points using the Laplacian operator on the point
clouds, the red crosses show the hand-labeled grasping points and the green circles show the points classified as
graspable by the SVM learning algorithm. The left hand side images show the classification on the training set,
where all the grasping points are correctly detected. The right hand side images show the classification on the
testing set, where most of the graspable points are correctly detected with very few false positives.

Figure 10: Objects used in the ORCA simulation environment

True Positives (%) | False Positives (%)
PFH 27.5 21.13
VFH 9.43 9.47
PFH + VFH 29.4 19.3
Spin Images 0 11.84
Shape Context 17.5 9.93

Table 3: Results of ORCA scenario using the SVM with polynomial kernel of degree 2




5

Conclusions

We explore the application of point cloud descriptors on the classification of graspable vs. non-graspable points.
Our approach fits into the learning by experimentation paradigm, where the robot gathers the grasping labels from
its own experience. We consider four point cloud descriptors: PFH, VFH, spin images and shape context. As an
initial approach, we select a small set of kitchen objects to perform the experiments and apply the SVM learning
algorithm. The results show that the PFH gathered with the VFH feature provide promissory results which may be
improved by considering more global information of the objects.
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